Document Type
Article
Publication Date
10-10-2019
Abstract
In single molecule fluorescence studies, background emission from labeled substrates often restricts their concentrations to non-physiological nanomolar values. One approach to address this challenge is the use of zero-mode waveguides (ZMWs), nanoscale holes in a thin metal film that physically and optically confine the observation volume allowing much higher concentrations of fluorescent substrates. Standard fabrication of ZMWs utilizes slow and costly E-beam nano-lithography. Herein, ZMWs are made using a self-assembled mask of polystyrene microspheres, enabling fabrication of thousands of ZMWs in parallel without sophisticated equipment. Polystyrene 1 mu m dia. microbeads self-assemble on a glass slide into a hexagonal array, forming a mask for the deposition of metallic posts in the inter-bead interstices. The width of those interstices (and subsequent posts) is adjusted within 100-300 nm by partially fusing the beads at the polystyrene glass transition temperature. The beads are dissolved in toluene, aluminum or gold cladding is deposited around the posts, and those are dissolved, leaving behind an array ZMWs. Parameter optimization and the performance of the ZMWs are presented. By using colloidal self-assembly, typical laboratories can make use of sub-wavelength ZMW technology avoiding the availability and expense of sophisticated clean-room environments and equipment.
Publication Title
PLOS One
ISSN
1932-6203
Publisher
Public Library of Science
Volume
14
Issue
10
First Page
1
Last Page
18
DOI
10.1371/journal.pone.0222964
Recommended Citation
Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS One, 14(10), 1-18. http://dx.doi.org/10.1371/journal.pone.0222964
Comments
Article Number: e0222964