Document Type

Article

Publication Date

2018

Abstract

ReEtching produces nanostructured silicon when a catalytic agent, e.g. dissolved V2O5, is used to facilitate etching between Si and H2O2. H2O2 regenerates dissolved V in a 5+ oxidation state, which initiates etching by injecting holes into the Si valence band. Independent control over the extent of reaction (controlled by the amount of H2O2 added) and the rate of reaction (controlled by the rate at which H2O2 is pumped into the etchant solution) allows us to porosify Si substrates of arbitrary size, shape and doping, including wafers, single-crystal powders, polycrystalline powders, metallurgical grade powder, Si nanowires, Si pillars and Si powders that have been textured with metal-assisted catalytic etching (MACE). Similarly, improved control over the nucleation and etching in MACE is achieved by pumped delivery of reagents. Nanowires are not produced directly by MACE of powders, rather they form when a porosified layers is cleaved by capillary forces or sonication.

Publication Title

ECS Transactions

ISSN

1938-5862

Publisher

The Electrochemical Society

Volume

86

Issue

1

First Page

65

Last Page

70

DOI

10.1149/08601.0065ecst

Comments

Version uploaded to Digital Commons @ WCU is final draft.

Share

COinS