Document Type

Article

Publication Date

2-2023

Abstract

Galactose is a secondary fermentable sugar that requires specific regulatory and structural genes for its assimilation, which are under catabolite repression by glucose. When glucose is absent, the catabolic repression is attenuated, and the structural GAL genes are fully activated. In Saccharomyces cerevisiae, the GAL pathway is under selection in environments where galactose is present. However, it is unclear the adaptive strategies in response to long-term propagation in galactose as a sole carbon source in laboratory evolution experiments. Here, we performed a 4,000-generation evolution experiment using 48 diploid Saccharomyces cerevisiae populations to study adaptation in galactose. We show that fitness gains were greater in the galactose-evolved population than in identically evolved populations with glucose as a sole carbon source. Whole-genome sequencing of 96 evolved clones revealed recurrent de novo single nucleotide mutations in candidate targets of selection, copy number variations, and ploidy changes. We find that most mutations that improve fitness in galactose lie outside of the canonical GAL pathway. Reconstruction of specific evolved alleles in candidate target of selection, SEC23 and IRA1, showed a significant increase in fitness in galactose compared to glucose. In addition, most of our evolved populations (28/46; 61%) fixed aneuploidies on Chromosome VIII, suggesting a parallel adaptive amplification. Finally, we show greater loss of extrachromosomal elements in our glucose-evolved lineages compared with previous glucose evolution. Broadly, these data further our understanding of the evolutionary pressures that drive adaptation to less-preferred carbon sources.

Publication Title

Journal of Molecular Evolution

ISSN

0022-2844

Publisher

Springer

Volume

91

Issue

1

First Page

46

Last Page

59

DOI

10.1007/s00239-022-10079-9

Share

COinS