Blast Brain Injury Elevates Catecholamine Biosynthesis in the Nucleus Tractus Solitaries and Oxidative Stress in the Hypothalamus in Rats

Nihal Tumer
Stanislav Svetlov
Nataliya Kirichenko
Melissa Whidden
West Chester University, mwhidden@wcupa.edu
Benedek Erdos

Follow this and additional works at: http://digitalcommons.wcupa.edu/kin_facpub

Part of the Kinesiology Commons

Bibliographic Information:
Journal of Neurotrauma, Vol. 29 Issue 10

Recommended Citation

This Meeting Abstract is brought to you for free and open access by the College of Health Sciences at Digital Commons @ West Chester University. It has been accepted for inclusion in Kinesiology by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact wcressler@wcupa.edu.
acceleration-deceleration injury with axon damage primarily in the corpus callosum without overt cortical injury. Sham and naive animals were included as controls and all animals received tamoxifen on 2 and 3 days post-injury. Mice were sacrificed at 3 days, 2 weeks, or 6 weeks post-injury. YFP and cell type markers were detected by immunohistochemistry and quantified using unbiased stereology of cells in the SVZ or manual counts with binning to assess cell localization.

Results

Shh expression, evaluated by immunohistochemistry, is increased at 3d post-injury in astrocytes of the SVZ and corpus callosum in comparison with naive mice. Tamoxifen administration at 2 and 3 days post-injury resulted in YFP expression among neural stem cells in non-injured mice and following both injury models. This heritable YFP labeling of Shh responsive cells at 2–3 days post-injury identified differences associated with SVZ cells. After CCI, YFP+ cells are increased in the SVZ ipsilaterally at 2wks post-injury and bilaterally at 6wks post-injury, compared to sham and naive animals. After CBI, YFP cells in the SVZ increase bilaterally between 2 to 6wks post-injury. In both models, at 2wks and 6wks post-injury, there is an increase in YFP+ cells extending laterally from the SVZ inferior to the corpus callosum. Many of the YFP+ cells colocalize with either a marker of transit amplifying cells (EGFR) or astrocytes and neural stem cells (GFAP).

Conclusions

After CCI and CBI, Shh colocalized with GFAP+ astrocytes in the SVZ and corpus callosum indicating that astrogliosis may account for the increased Shh expression seen at 3 days post-injury. Gli1-CreERT2;R26-YFP mice showed heritable labeling of neural stem cells with tamoxifen administration at 2 and 3 days post-injury when Shh expression was robust. Shh-responsive cells increased in the SVZ and also extended from the dorsal lateral SVZ under the corpus callosum. YFP in cells associated with the SVZ were double labeled with GFAP suggesting that they are neural stem cells or with EGFR suggesting they are in an active state as necessary for migration and repair. Thus, the upregulation of Shh and Shh signaling in the SVZ following TBI may indicate a potential role for Shh in neural stem cells neuroregenerative responses that can be prolonged even after a mild injury in the adult CNS.

Acknowledgments

This work was funded by the U.S. Department of Defense in the Center for Neuroscience and Regenerative Medicine.

Keywords

traumatic brain injury, sonic hedgehog, demyelination, regeneration, stem cells

C68

Expression of Hyperphosphorylated Tau Protein Following Controlled Cortical Impact in Immature (Post Natal Day 17) Rats

Al-Wala Awad, B.S., University of Arizona College of Medicine
Roxanne Perez, B.S., St. Joseph’s Hospital and Medical Center
Lucy Treiman, Ph.D., PsyD., St. Joseph’s Hospital and Medical Center
Dr. P. David Adelson, M.D., Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ

Introduction

Traumatic Brain Injury (TBI) remains the leading cause of death and disability in children. As well, upwards of 30% of patients with Alzheimer’s Disease (AD) have a history of a single incident TBI. Amyloid beta (Aβ) plaques and neurofibrillary tangles of tau protein (TP) remain as the hallmark postmortem findings.