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ELEMENTS OF HIGHER HOMOTOPY GROUPS
UNDETECTABLE BY POLYHEDRAL APPROXIMATION

JOHN K. ACETI AND JEREMY BRAZAS

When nontrivial local structures are present in a topological space X , a
common approach to characterizing the isomorphism type of the n-th ho-
motopy group πn(X, x0) is to consider the image of πn(X, x0) in the n-
th Čech homotopy group π̌n(X, x0) under the canonical homomorphism
9n : πn(X, x0) → π̌n(X, x0). The subgroup ker(9n) is the obstruction to
this tactic as it consists of precisely those elements of πn(X, x0), which can-
not be detected by polyhedral approximations to X . In this paper, we use
higher dimensional analogues of Spanier groups to characterize ker(9n). In
particular, we prove that if X is paracompact, Hausdorff, and LCn−1, then
ker(9n) is equal to the n-th Spanier group of X . We also use the perspective
of higher Spanier groups to generalize a theorem of Kozlowski–Segal, which
gives conditions ensuring that 9n is an isomorphism.

1. Introduction

When nontrivial local structures are present in a topological space X , a common
approach to characterizing the isomorphism type of πn(X, x0) is to consider the
image of πn(X, x0) in the n-th Čech (shape) homotopy group π̌n(X, x0) under the
canonical homomorphism 9n : πn(X, x0)→ π̌n(X, x0). The n-th shape kernel
ker(9n) is the obstruction to this tactic as it consists of precisely those elements
of πn(X, x0), which cannot be detected by polyhedral approximations to X . This
method has proved successful in many situations for both the fundamental group
[Cannon and Conner 2006; Eda and Kawamura 1998; Fischer and Guilbault 2005;
Fischer and Zastrow 2005] and higher homotopy groups [Brazas 2021; Eda and
Kawamura 2000a; 2010; Eda et al. 2013; Kawamura 2003]. In this paper, we
study the map 9n and give a characterization the n-th shape kernel in terms of
higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred to
as “Spanier groups,” first appeared in E.H. Spanier’s unique approach [1966] to
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covering space theory. If U is an open cover of a topological space X and x0 ∈ X ,
then the Spanier group with respect to U is the subgroup π

Sp
1 (U , x0) of π1(X, x0)

generated by path-conjugates [α][γ ][α]−1 where α is a path starting at x0 and γ

is a loop based at α(1) with image being contained in some element of U . These
subgroups are particularly relevant to covering space theory since, when X is
locally path-connected, a subgroup H ≤ π1(X, x0) corresponds to a covering map
p : (Y, y0)→ (X, x0) if and only if π

Sp
1 (U , x0)≤H for some open cover U [Spanier

1966, 2.5.12]. The intersection π
Sp
1 (X, x0)=

⋂
U π

Sp
1 (U , x0) is called the Spanier

group of (X, x0) [Fischer et al. 2011]. The inclusion π
Sp
1 (X, x0)⊆ ker(91) always

holds [Fischer and Zastrow 2007, Proposition 4.8]. It is proved in [Brazas and
Fabel 2014, Theorem 6.1] that π

Sp
1 (X, x0)= ker(91) whenever X is paracompact

Hausdorff and locally path connected. The upshot of this equality is having a
description of level-wise generators (for each open cover U ) whereas there may
be no readily available generating set for the kernel of a homomorphism induced
by a canonical map from X to the nerve |N (U )|. Indeed, 1-dimensional Spanier
groups have proved useful in persistence theory [Virk 2020]. Since much of applied
topology is based on a geometric refinement of polyhedral approximation from
shape theory, there seems potential for higher dimensional analogues to be useful
as well.

Higher dimensional analogues of Spanier groups recently appeared in [Bahredar
et al. 2021] and are defined in a similar way: π

Sp
n (U , x0) is the subgroup of

πn(X, x0) consisting of homotopy classes of path-conjugates α ∗ f where α is a
path starting at x0 and f : Sn

→ X is based at α(1) with image being contained in
some element of U . Then π

Sp
n (X, x0) is the intersection of these subgroups. In

this paper, we prove a higher-dimensional analogue of the 1-dimensional equality
π

Sp
1 (X, x0)= ker(91) from [Brazas and Fabel 2014].
A space X is LCn if for every neighborhood U of a point x ∈ X , there is a

neighborhood V of x in U such that every map f : Sk
→ V , 0 ≤ k ≤ n is null-

homotopic in U . When a space is LCn , “small” maps on spheres of dimension ≤ n
contract by null-homotopies of relatively the same size. Certainly, every locally
n-connected space is LCn . However, when n ≥ 1, the converse is not true even for
metrizable spaces. Our main result is the following.

Theorem 1.1. Let n ≥ 1 and x0 ∈ X. If X is paracompact, Hausdorff , and LCn−1,
then π

Sp
n (X, x0)= ker(9n).

This result confirms that higher Spanier groups, like their 1-dimensional counter-
parts, often identify precisely those elements of πn(X, x0) which can be detected
by polyhedral approximations to X . More precisely, under the hypotheses of
Theorem 1.1, g ∈ π

Sp
n (X, x0) if and only if f#(g)= 0 for every map f : X→ K to

a polyhedron K . A first countable path-connected space is LC0 if and only if it
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is locally path connected. Hence, in dimension n = 1, Theorem 1.1 only expands
[Brazas and Fabel 2014, Theorem 6.1] to some nonfirst countable spaces.

Regarding the proof of Theorem 1.1, the inclusion π
Sp
n (X, x0)⊆ ker(9n) was

first proved for n = 1 in [Fischer and Zastrow 2007, Proposition 4.8] and for n ≥ 2
in [Bahredar et al. 2021, Theorem 4.14]. We include this proof for the sake of
completion (Corollary 3.11). The proof of the inclusion ker(9n) ⊆ π

Sp
n (X, x0)

appears in Section 5 and is more intricate, requiring a carefully chosen sequence of
open cover refinements using the LCn−1 property. These refinements allow one to
recursively extend maps on simplicial complexes skeleton-wise. These extension
methods, established in Section 4, are similar to methods found in [Kozlowski and
Segal 1977; 1978].

We also put these extension methods to work in Section 6 where we identify
conditions that imply 9n is an isomorphism. Kozlowski and Segal [1978], proved
that if X is paracompact Hausdorff and LCn , then 9n is an isomorphism. Fischer
and Zastrow [2007], generalized this result in dimension n = 1 by replacing “LC1”
with “locally path connected and semilocally simply connected.” Similar, to the
approach of Fischer and Zastrow, our use of Spanier groups shows that the existence
of small null-homotopies of small maps Sn

→ X (specifically in dimension n) is not
necessary to prove that 9n is injective. We say a space X is semilocally πn-trivial
if for every x ∈ X there exists an open neighborhood U of x such that every map
Sn
→U is null-homotopic in X . This definition is independent of lower dimensions

but certainly LCn
⇒ (LCn−1 and semilocally πn-trivial). Our second result proves

Kozlowski–Segal’s theorem under a weaker hypothesis and is stated as follows.

Theorem 1.2. Let n ≥ 1 and x0 ∈ X. If X is paracompact, Hausdorff , LCn−1, and
semilocally πn-trivial, then 9n : πn(X, x0)→ π̌n(X, x0) is an isomorphism.

The hypotheses in Theorem 1.2 are the homotopical versions of the hypotheses
used in [Mardešić 1959] to ensure that the canonical homomorphism ϕ∗ : Hn(X)→

Ȟn(X) is an isomorphism; see also [Eda and Kawamura 2000b] regarding the
surjectivity of ϕ∗. Examples show that 9n can fail to be an isomorphism if X
is semilocally πn-trivial but not LCn−1 (Example 7.4) or if X is LCn−1 but not
semilocally πn-trivial (Example 7.5).

The authors are grateful to the referee for many suggestions, which substantially
improved the exposition of this paper.

2. Preliminaries and notation

Throughout this paper, X is assumed to be a path-connected topological space
with basepoint x0. The unit interval is denoted I and Sn is the unit n-sphere with
basepoint d0 = (1, 0, . . . , 0). The n-th homotopy group of (X, x0) is denoted
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πn(X, x0). If f : (X, x0)→ (Y, y0) is a based map, then f# :πn(X, x0)→πn(Y, y0)

is the induced homomorphism.
A path in a space X is a map α : I → X from the unit interval. The reverse of α

is the path given by α−(t)= α(1− t) and the concatenation of two paths α, β with
α(1)= β(0) is denoted α ·β. Similarly, if f, g : Sn

→ X are maps based at x ∈ X ,
then f · g denotes the usual n-loop concatenation and f − denotes the reverse map.
We may write

∏m
i=1 fi to denote an m-fold concatenation f1 · f2 · · · · · fm .

2.1. Simplicial complexes. We make heavy use of standard notation and theory of
abstract and geometric simplicial complexes, which can be found in texts such as
[Mardešić and Segal 1982; Munkres 1984]. We briefly recall relevant notation.

For an abstract (geometric) simplicial complex K and integer r ≥ 0, Kr denotes
the r-skeleton of K . If K is abstract, |K | denotes the geometric realization of K
with the weak topology. If K is geometric, then sdm K denotes the m-th barycentric
subdivision of K and if v is a vertex of K , then st(v, K ) denotes the open star of
the vertex v. When L ⊆ K is a subcomplex, sdm L is a subcomplex of sdm K . If
σ ={v0, v1, . . . , vr } is a r -simplex of K , then [v0, v1, . . . , vr ] denotes the r -simplex
of |K | with the indicated orientation.

We frequently make use of the standard n-simplex 1n in Rn spanned by the origin
o and standard unit vectors. Since the boundary ∂1n = (1n)n−1 is homeomorphic
to Sn−1, we fix a based homeomorphism ∂1n ∼= Sn−1 that allows us to represent
elements of πn(X, x0) by maps (∂1n+1, o)→ (X, x0).

2.2. The Čech expansion and shape homotopy groups. We now recall the con-
struction of the first shape homotopy group π̌1(X, x0) via the Čech expansion. For
more details; see [Mardešić and Segal 1982].

Let O(X) be the set of open covers of X directed by refinement; we write
V ⪰U when V refines U . Similarly, let O(X, x0) be the set of open covers with a
distinguished element containing x0, i.e., the set of pairs (U , U0) where U ∈O(X),
U0 ∈ U , and x0 ∈U0. We say (V , V0) refines (U , U0) if V ⪰ U and V0 ⊆U0.

The nerve of a cover (U , U0) ∈ O(X, x0) is the abstract simplicial complex
N (U ) whose vertex set is N (U )0 = U and vertices A0, . . . , An ∈ U span an
n-simplex if

⋂n
i=0 Ai ̸= ∅. The vertex U0 is taken to be the basepoint of the

geometric realization |N (U )|. Whenever (V , V0) refines (U , U0), we can construct
a simplicial map pU V : N (V )→ N (U ), called a projection, by sending a vertex
V ∈ N (V ) to a vertex U ∈U such that V ⊆U . In particular, we make a convention
that pU V (V0)=U0. Any such assignment of vertices extends linearly to a simplicial
map. Moreover, the induced map |pU V | : |N (V )| → |N (U )| is unique up to based
homotopy. Thus the homomorphism pU V # : π1(|N (V )|, V0)→ π1(|N (U )|, U0)

induced on fundamental groups is (up to coherent isomorphism) independent of the
choice of simplicial map.
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Recall that an open cover U of X is normal if it admits a partition of unity
subordinated to U . Let 3 be the subset of O(X, x0) (also directed by refinement)
consisting of pairs (U , U0) where U is a normal open cover of X and such that
there is a partition of unity {φU }U∈U subordinated to U with φU0(x0) = 1. It is
well-known that every open cover of a paracompact Hausdorff space X is normal.
Moreover, if (U , U0) ∈ O(X, x0), it is easy to refine (U , U0) to a cover (V , V0)

such that V0 is the only element of V containing x0 and therefore (V , V0) ∈ 3.
Thus, for paracompact Hausdorff X , 3 is cofinal in O(X, x0).

The n-th shape homotopy group is the inverse limit

π̌n(X, x0)= lim
←−−

(πn(|N (U )|, U0), pU V #, 3).

This group is also referred to as the n-th Čech homotopy group.
Given an open cover (U , U0) ∈O(X, x0), a map pU : X→|N (U )| is a (based)

canonical map if p−1
U (st(U, N (U )))⊆U for each U ∈U and pU (x0)=U0. Such

a canonical map is guaranteed to exist if (U , U0) ∈3: find a locally finite partition
of unity {φU }U∈U subordinated to U such that φU0(x0) = 1. When U ∈ U and
x ∈U , determine pU (x) by requiring its barycentric coordinate belonging to the
vertex U of |N (U )| to be φU (x). According to this construction, the requirement
φU0(x0)= 1 gives pU (x0)=U0.

A canonical map pU is unique up to based homotopy and whenever (V , V0)

refines (U , U0), the compositions pU V ◦ pV and pU are homotopic as based maps.
Hence, for n ≥ 1, the homomorphisms

pU # : πn(X, x0)→ πn(|N (U )|, U0)

satisfy pU V # ◦ pV # = pU #. These homomorphisms induce the following canonical
homomorphism to the limit, which is natural in the continuous maps of based
spaces:

9n : πn(X, x0)→ π̌n(X, x0) given by 9n([ f ])= ([pU ◦ f ]).

The subgroup ker(9n), which we refer to as the n-th shape kernel is, in a
rough sense, an algebraic measure of the n-dimensional homotopical information
lost when approximating X by polyhedra. Since (pU ) forms an HPol-expansion
of X [Mardešić and Segal 1982, Appendix 1, Sectin 3.2, Theorem 8], we have
[ f ] ∈ πn(X, x0)\ ker(9n) if and only if there exist a polyhedron K and a map
p : (X, x0)→ (K , k0) such that p#([ f ]) ̸= 0 in πn(K , k0). Of utmost importance
is the situation when ker(9n) = 0. In this case, πn(X, x0) can be understood as
a subgroup of π̌n(X, x0), that is, the n-th shape group retains all the data in the
n-th homotopy group of X . A space for which ker(9n)= 0 is said to be πn-shape
injective.
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3. Higher Spanier groups

To define higher Spanier groups as in [Bahredar et al. 2021], we briefly recall the
action of the fundamental groupoid on the higher homotopy groups of a space. Fix a
retraction R : Sn

× I→ Sn
×{0}∪{d0}× I . Given a map f : (Sn, d0)→ (X, y0) and

a path α : I→ X with α(0)= x0 and α(1)= y0, define F : Sn
×{0}∪{d0}× I→ X

so that g(x, 0) = f (x) and f (d0, t) = α(1− t). The path-conjugate of f by α is
the map α ∗ f : (Sn, d0)→ (X, x0) given by α ∗ f (x)= F(R(x, 1)).

Path-conjugation defines the basepoint-change isomorphism ϕα : πn(X, y0)→

πn(X, x0), ϕα([ f ])=[α∗ f ]. In particular, [α∗ f ][α∗g]= [α∗( f ·g)]. Additionally,
if [α] = [β], which we write to mean that the paths α and β are homotopic relative
to their endpoints, then [α ∗ f ] = [β ∗ f ]. Note that when n = 1, f : S1

→ X is a
loop and α ∗ f ≃ α · f ·α−.

Definition 3.1. Let n ≥ 1 and α : (I, 0)→ (X, x0) be a path and U be an open
neighborhood of α(1) in X . Define

[α] ∗πn(U )= {[α ∗ f ] ∈ πn(X, x0) | f (Sn)⊆U, f (d0)= α(1)}.

Since [α∗ f ][α∗g] = [α∗( f ·g)], the set [α]∗πn(U ) is a subgroup of πn(X, x0).

Definition 3.2. Let n ≥ 1, U be an open cover of X , and x0 ∈ X . The n-th
Spanier group of (X, x0) with respect to U is the subgroup π

Sp
n (U , x0) of πn(X, x0)

generated by the subgroups [α] ∗ πn(U ) for all pairs (α, U ) with α(1) ∈ U and
U ∈ U . In short

π Sp
n (U , x0)= ⟨[α] ∗πn(U ) |U ∈ U , α(1) ∈U ⟩.

The n-th Spanier group of (X, x0) is the intersection

π Sp
n (X, x0)=

⋂
U ∈O(X)

π Sp
n (U , x0).

We may refer to subgroups of the form π
Sp
n (U , x0) as relative Spanier groups and

to π
Sp
n (X, x0) as the absolute Spanier group.

Remark 3.3. We note that our definition of n-th Spanier group is the “unbased”
definition from [Bahredar et al. 2021]; see also [Fischer et al. 2011] for more on
“based” Spanier groups, which is defined using covers of X by pointed open sets.
The two notions agree for locally path connected spaces. When n = 1, Spanier
groups (absolute and relative to a cover) are normal subgroups of π1(X, x0). In the
case n = 1, Spanier groups have been studied heavily due to their relationship to
covering space theory [Spanier 1966].

Remark 3.4 (functorality). Let Top∗ denote the category of based topological
spaces and based continuous functions and Grp and Ab denote the usual categories



ELEMENTS UNDETECTABLE BY POLYHEDRAL APPROXIMATION 227

of groups and abelian groups respectively. If f : (X, x0) → (Y, y0) is a map
and V is an open cover of Y , then U = { f −1(V ) | V ∈ V } is an open cover
of X such that f#(πn(U , x0)) ⊆ πn(V , y0). It follows that f#(π

Sp
n (X, x0)) ⊆

π
Sp
n (Y, y0). Thus ( f#)|π Sp

n (X,x0)
: π

Sp
n (X, x0)→ π

Sp
n (Y, y0) is well-defined showing

that π
Sp
1 : Top∗→ Grp and π

Sp
n : Top∗→ Ab, n ≥ 2, are functors [Bahredar et al.

2021, Theorem 4.2]. Moreover, if g : (Y, y0)→ (X, x0) is a based homotopy inverse
of f , then ( f#)|π Sp

n (X,x0)
and (g#)|π Sp

n (Y,y0)
are inverse isomorphisms. Hence, these

functors descend to functors hTop∗→ Grp and hTop∗→ Ab where hTop∗ is the
category of based spaces and basepoint-relative homotopy classes of based maps.

Remark 3.5 (basepoint invariance). Suppose x0, x1 ∈ X and β : I → X is a path
from x1 to x0, and ϕβ : πn(X, x0)→ πn(X, x1), ϕβ([g])= [β ∗ g] is the basepoint-
change isomorphism. If [α ∗ f ] is a generator of π

Sp
n (U , x0), then ϕβ([α ∗ f ])=

[(β · α) ∗ f ] is a generator of π
Sp
n (U , x1). It follows that ϕβ(π

Sp
n (U , x0)) =

π
Sp
n (U , x1). Moreover, in the absolute case, we have ϕβ(π

Sp
n (X, x0))=π

Sp
n (X, x1).

In particular, changing the basepoint of X does not change the isomorphism type
of the n-th Spanier group, particularly its triviality.

In terms of our choice of generators, a generic element of π
Sp
n (U , x0) is a product∏m

i=1[αi ∗ fi ] where each map fi : Sn
→ X has an image in some open set Ui ∈U

(see Figure 1). The next lemma identifies how such products might actually appear
in practice and motivates the proof of our key technical lemma, Lemma 5.1. Recall
that (sdm 1n+1)n is the union of the boundaries of the (n+1)-simplices in the m-th
barycentric subdivision sdm 1n+1.

Lemma 3.6. For m, n∈N, let U be an open cover of X and f : ((sdm 1n+1)n, o)→

(X, x0) be a map such that for every (n + 1)-simplex σ of sdm 1n+1, we have
f (∂σ )⊆U for some U ∈ U . Then f#(πn((sdm 1n+1)n, o))⊆ π

Sp
n (U , x0).

Proof. The case n = 1 is proved in [Brazas and Fabel 2014]. Suppose n ≥ 2
and set K = sdm 1n+1. The set W = { f −1(U ) | U ∈ U } is an open cover of
Kn = (sdm 1n+1)n such that f#(π

Sp
n (W , o))⊆ π

Sp
n (U , x0) and for every (n+ 1)-

simplex σ in K , we have ∂σ ⊆ f −1(U ) for some U ∈U . Thus it suffices to prove
πn(Kn, o)⊂ π

Sp
n (W , o). Let S be the set of (n+ 1)-simplices of K . Since n ≥ 2,

Kn is simply connected. Standard simplicial homology arguments give that the
reduced singular homology groups of Kn are trivial in dimension < n and Hn(Kn)

is a finitely generated free abelian group. A set of free generators for Hn(Kn) can be
chosen by fixing the homology class of a simplicial map gσ :∂1n+1→Kn that sends
∂1n+1 homeomorphically onto the boundary of an (n+1)-simplex σ ∈ S. Thus Kn

is (n− 1)-connected and the Hurewicz homomorphism h : πk(Kn, o)→ Hk(Kn)

is an isomorphism for all 1 ≤ k ≤ n. In particular, let pσ : I → Kn be any
path from o to gσ (o). Then πn(Kn, o) is freely generated by the path-conjugates
[pσ ∗ gσ ], σ ∈ S. By assumption, for every σ ∈ S, [pσ ∗ gσ ] is a generator of
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U2 U3

U1

x0

˛1

˛2
˛3

f1

f2

f3

Figure 1. An element of π
Sp
2 (U , x0), which is a product of three

path-conjugate generators [αi ∗ fi ].

π
Sp
n (W , o). Since π

Sp
n (W , o) contains all the generators of πn(Kn, o), the inclusion

πn(Kn, o)⊂ π
Sp
n (W , o) follows. □

To characterize the triviality of relative Spanier groups, we establish the following
terminology.

Definition 3.7. Let n ≥ 0 and x ∈ X . We say the space X is:

(1) Semilocally πn-trivial at x if there exists an open neighborhood U of x in X
such that every map Sn

→U is null-homotopic in X .

(2) Semilocally n-connected at x if there exists an open neighborhood U of x in
X such that every map Sk

→ X , 0≤ k ≤ n is null-homotopic in X .

We say X is semilocally πn-trivial (resp. semilocally n-connected) if it has this
property at all of its points.

It is straightforward to see that X is semilocally n-connected at x if and only if
X is semilocally πk-trivial at x for all 0≤ k ≤ n.

Remark 3.8. A space X is semilocally πn-trivial if and only if X admits an open
cover U such that π

Sp
n (U , x0) is trivial [Bahredar et al. 2021, Theorem 3.7]. More-

over, X is semilocally n-connected if and only if X admits an open cover U such
that π

Sp
k (U , x0) is trivial for all 1 ≤ k ≤ n. Note that local path connectivity is

independent of the properties given in Definition 3.7.
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Attempting a proof of Theorem 1.1, one should not expect the groups π
Sp
n (U , x0)

and ker(pU #) to agree “on the nose.” Indeed, the following example shows that we
should not expect the equality π

Sp
n (U , x0)= ker(pU #) to hold even in the “nicest”

local circumstances.

Example 3.9. Let X = S2
∨ S2 and W be a contractible neighborhood of d0 in S2.

Set U1 = S2
∨W and U2 = W ∨ S2 and consider the open cover U = {U1, U2}

of X . Then π
Sp
3 (U , x0) ∼= Z2 is freely generated by the homotopy classes of the

two inclusions i1, i2 : S2
→ X . However, π3(X) ∼= Z3 is freely generated by [i1],

[i2], and the Whitehead product [[i1, i2]]. However |N (U )| is a 1-simplex and is
therefore contractible. Thus ker(pU #) is equal to π3(X) and contains [[i1, i2]]. Even
though the spaces X, U1, U2 are locally contractible and the elements of U are
1-connected, π

Sp
n (U , x0) is a proper subgroup of ker(pU #). One can view this

failure as the result of two facts: (1) The sets Ui are not 2-connected and (2) the
definition of Spanier group does not allow one to generate homotopy classes by
taking Whitehead products of maps S2

→Ui in the neighboring elements of U .

First, we show the inclusion π
Sp
n (X, x0) ⊆ ker(9n) holds in full generality.

Recall that the intersections π
Sp
n (X, x0) =

⋂
U ∈O(X) π

Sp
n (U , x0) and ker(9n) =⋂

(U ,U0)∈3
ker(pU #) are formally indexed by different sets.

Lemma 3.10. For every open cover U of X and canonical map pU : X→|N (U )|,
there exists a refinement V ⪰ U such that π

Sp
n (V , x0)⊆ ker(pU #) in πn(X, x0).

Proof. Let U ∈ O(X). The stars st(U, |N (U )|), U ∈ U form an open cover of
|N (U )| by contractible sets and therefore V ={p−1

U (st(U, |N (U )|)) |U ∈U } is an
open cover of X . Since pU is a canonical map, we have p−1

U (st(U, |N (U )|))⊆U
for all U ∈ U . Thus V is a refinement of U . A generator of π

Sp
n (V , x0) is of the

form [α ∗ f ] for a map f : Sn
→ p−1

U (st(U, |N (U )|)). However, pU ◦ f has image
in the contractible open set st(U, |N (U )|) and is therefore null-homotopic. Thus
pU #([α ∗ f ])= 0. We conclude that pU #(π

Sp
n (V , x0))= 0. □

Corollary 3.11 [Bahredar et al. 2021, Theorem 4.14]. Let n ≥ 1. For any based
space (X, x0), we have π

Sp
n (X, x0)⊆ ker(9n).

Proof. Suppose [ f ] ∈ π
Sp
n (X, x0). Given a normal, based open cover (U , U0) ∈3

and any canonical map pU : X → |N (U )|, Lemma 3.10 ensures we can find a
refinement V ⪰ U such that π

Sp
n (V , x0) ⊆ ker(pU #). Thus [ f ] ∈ π

Sp
n (V , x0) ⊆

ker(pU #). Since (U , U0) is arbitrary, we conclude that [ f ] ∈ ker(9n). □

Example 3.12 (higher earring spaces). An important space, which we will call
upon repeatedly for examples, is the n-dimensional earring space

En =
⋃
j∈N

{x ∈ Rn+1
| ∥x− (1/j, 0, 0, . . . , 0)∥ = 1/j},
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which is a shrinking wedge (one-point union) of n-spheres with basepoint the
origin o. It is known that En is (n− 1)-connected, locally (n− 1)-connected, and
πn-shape injective for all n ≥ 1 [Eda and Kawamura 2000a; Morgan and Morrison
1986]. However, En is not semilocally πn-trivial. Thus π

Sp
n (U , o) ̸= 0 for any open

cover U of En even though in the absolute case π
Sp
n (En, o) is trivial.

Example 3.13. Let n ≥ 3 and notice that E1 ∨ En is not semilocally π1-trivial
(since it has E1 as a retract) and therefore fails to be semilocally (n− 1)-connected.
However, it has recently been shown that πk(E1∨En)= 0 for 2≤ k ≤ n−1 and that
E1 ∨ En is πn-shape injective [Brazas 2021]. Thus E1 ∨ En is semilocally πk-trivial
for all k ≤ n − 1 except k = 1 and π

Sp
n (E1 ∨ En, o) = 0. Thus the failure to be

semilocally n-connected can occur at single dimension less than n.

4. Recursive extension lemmas

Toward a proof of the inclusion ker(9n) ⊆ π
Sp
n (X, x0) for LCn−1 space X , we

introduce some convenient notation and definitions. If U is an open cover and
A ⊆ X , then St(A, U ) =

⋃
{U ∈ U | A ∩ U ̸= ∅}. Note that if A ⊆ B, then

St(A, U ) ⊆ St(B, U ). Also if V ⪰ U , then St(A, V ) ⊆ St(A, U ). We take the
following terminology from [Willard 1970].

Definition 4.1. Let U , V ∈ O(X):

(1) We say V is a barycentric-star refinement of U if for every x ∈ X , we have
St(x, V )⊆U for some U ∈ U . We write V ⪰∗ U .

(2) We say V is a star refinement of U if for every V ∈ V , we have St(V, V )⊆U
for some U ∈ U . We write V ⪰∗∗ U .

Note that if U ⪯∗ V ⪯∗ W , then U ⪯∗∗ W .

Lemma 4.2 [Stone 1948]. A T1 space X is paracompact if and only if for every
U ∈ O(X) there exists V ∈ O(X) such that V ⪰∗ U .

Definition 4.3. [Mardešić and Segal 1982, Chapter I, Section 3.2.5] Let n ∈
{0, 1, 2, 3, . . . ,∞}. A space X is LCn at x ∈ X if for every neighborhood U
of x , there exists a neighborhood V of x such that V ⊆ U and such that for all
0 ≤ k ≤ n (k < ∞ if n = ∞), every map f : ∂1k+1 → V extends to a map
g :1k+1→U . We say X is LCn if X is LCn at all of its points.

We have the following evident implications for both the point-wise and global
properties:

X is locally n-connected⇒ X is LCn
⇒ X is semilocallyn-connected.

For first countable spaces, the LCn property is equivalent to the “n-tame” property
in [Brazas 2021] defined in terms of shrinking sequences of maps.



ELEMENTS UNDETECTABLE BY POLYHEDRAL APPROXIMATION 231

Definition 4.4. Suppose V ⪰ U in O(X):

(1) We say V is an n-refinement of U , and write V ⪰n U , if for all 0 ≤ k ≤ n,
V ∈ V , and maps f : ∂1k+1 → V , there exists U ∈ U with V ⊆ U and a
continuous extension g :1k+1→U of f .

(2) We say V is an n-barycentric-star refinement of U , and write V ⪰n
∗

U , if for
every 0≤ k ≤ n, for every x ∈ X , and every map f : ∂1k+1→ St(x, V ), there
exists U ∈ U with St(x, V )⊆U and a continuous extension g :1k+1→U
of f .

Note that if V ⪰n U (resp. V ⪰n
∗

U ), then V ⪰k U (resp. V ⪰k
∗

U ) for all
0≤ k ≤ n.

Lemma 4.5. Suppose X is paracompact, Hausdorff , and LCn . For every U ∈

O(X), there exists V ∈ O(X) such that V ⪰n
∗

U .

Proof. Let U ∈ O(X). Since X is LCn , for every U ∈ U and x ∈ U , there
exists an open neighborhood W (U, x) such that W (U, x) ⊆ U and such that for
all 0 ≤ k ≤ n, each map f : ∂1k+1→ W (U, x) extends to a map g :1k+1→ U .
Let W = {W (U, x) |U ∈ U , x ∈U } and note W ⪰n U . Since X is paracompact
Hausdorff, by Lemma 4.2, there exists V ∈ O(X) such that V ⪰∗ W .

Fix x ′ ∈ X . Then St(x ′, V )⊆W (U, x) for some x ∈U ∈U . Then St(x ′, V )⊆U .
Moreover, if 0≤ k ≤ n and f : ∂1k+1→ St(x ′, V ) is a map, then since f has image
in W (U, x), there is an extension g :1k+1→U . This verifies that V ⪰n

∗
U . □

For the next two lemmas, we fix n ∈ N, a geometric simplicial complex K with
dim K = n + 1, and a subcomplex L ⊆ K with dim L ≤ n. Let M[k] = L ∪ Kk

denote the union of L and the k-skeleton of K . Since L ⊆ Kn , M[n] = Kn is the
union of the boundaries of the (n+ 1)-simplices of K . Later we will consider the
cases where (1) K = sdm 1n+1 and L = sdm ∂1n+1 and (2) K = sdm ∂1n+2 and
L = {o}.

Lemma 4.6 (recursive extensions). Suppose 1≤ k ≤ n, U ⪯∗ V ⪯k−1
∗

W , m ∈ N,
and f : M[k − 1] → X is a map such that for every (n + 1)-simplex σ of K , we
have f (σ ∩ M[k − 1]) ⊆ Wσ for some Wσ ∈ W . Then there exists a continuous
extension g : M[k] → X of f such that for every (n+ 1)-simplex σ of K , we have
g(σ ∩M[k])⊆Uσ for some Uσ ∈ U .

Proof. Supposing the hypothesis, we must extend f to the k-simplices of M[k] that
do not lie in L . Let τ be a k-simplex of M[k] that does not lie in L and let Sτ be
the set of (n+ 1)-simplices in K that contain τ . By assumption, Sτ is nonempty.
We make some general observations first. Since f maps the (k − 1)-skeleton of
each (n+ 1)-simplex σ ∈ Sτ into Wσ and ∂τ lies in this (k− 1)-skeleton, we have



232 JOHN K. ACETI AND JEREMY BRAZAS

f (∂τ )⊆
⋂

σ∈Sτ
Wσ . Thus, for all τ , we have

f (∂τ )⊆
⋂
σ∈Sτ

St(Wσ , V ).

Fix a vertex vτ of τ and let xτ = f (vτ ). Then xτ ∈ Wσ ⊆ St(xτ , W ) whenever
σ ∈ Sτ . Since W ⪰k−1

∗
V , we may find Vτ ∈ V such that St(xτ , W ) ⊆ Vτ and

such that every map ∂1k→ St(xτ , W ) extends to a map 1k→ Vτ . In particular,
f |∂τ : ∂τ→Wσ extends to a map τ→ Vτ . We define g :M[k]→ X so that it agrees

with f on M[k− 1] and so that the restriction of g to τ is a choice of continuous
extension τ → Vτ of f |∂τ .

We now choose the sets Uσ . Fix an (n+ 1)-simplex σ of K . If the k-skeleton of
σ lies entirely in L , we choose any Uσ ∈ U satisfying Wσ ⊆ Uσ . Suppose there
exists at least one k-simplex in σ not in L . Then whenever τ is a k-simplex of σ

not in L , we have Wσ ⊆ St(xτ , W ) ⊆ Vτ . Fix a point yσ ∈ Wσ . The assumption
that V ⪰∗ U implies that there exists Uσ ∈ U such that St(yσ , V ) ⊆ Uσ . In this
case, we have Wσ ⊆ Vτ ⊆Uσ whenever τ is a k-simplex of σ not in L .

Finally, we check that g satisfies the desired property. Again, fix an (n + 1)-
simplex σ of K . If τ is a k-simplex of σ not in L , our definition of g gives
g(τ ) ⊆ Vτ ⊆ Uσ . If τ ′ is a k-simplex in σ ∩ L , then g(τ ′) = f (τ ′) ⊆ Wσ ⊆ Uσ .
Overall, this shows that g(σ ∩M[k])⊆Uσ for each (n+ 1)-simplex σ of K . □

A direct, recursive application of the previous lemma is given in the following
statement.

Lemma 4.7. Suppose there is a sequence of open covers

Wn ⪯∗ Vn ⪯
n−1
∗

Wn−1 ⪯∗ · · · ⪯
2
∗

W2 ⪯∗ V2 ⪯
1
∗

W1 ⪯∗ V1 ⪯
0
∗

W0

and a map f0 : M[0] → X such that for every (n + 1)-simplex σ of K , we have
f0(σ ∩M[0])⊆W for some W ∈W0. Then there exists an extension fn :M[n]→ X
of f0 such that for every (n + 1)-simplex σ of K , we have fn(∂σ ) ⊆ U for some
U ∈Wn .

5. A proof of Theorem 1.1

We apply the extension results of the previous section in the case where K =
sdm 1n+1 for some m ∈ N and L = sdm ∂1n+1 so that M[k] = L ∪ Kk consists of
the n-simplices of the boundary of 1n+1 and the k-simplices of sdm 1n+1 not in the
boundary. Note that M[n] is the union of the boundaries of the (n+ 1)-simplices
of sdm 1n+1.

Lemma 5.1. Let n ≥ 1. Suppose X is paracompact, Hausdorff , and LCn−1. Then
for every open cover U of X , there exists (V , V0) ∈ 3 such that ker(pV #) ⊆

π
Sp
n (U , x0).
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Proof. Suppose U ∈ O(X). Since X is paracompact, Hausdorff, and LCn−1, we
may apply Lemmas 4.2 and 4.5 to first find a sequence of refinements

U = Un ⪯∗ Vn ⪯
n−1
∗

Un−1 ⪯∗ · · · ⪯
2
∗

U2 ⪯∗ V2 ⪯
1
∗

U1 ⪯∗ V1 ⪯
0
∗

U0

and then one last refinement U0 ⪯∗ V0 = V . Let V0 ∈ V be any set containing
x0 and recall that since X is paracompact Hausdorff (V , V0) ∈ 3. We will show
that ker(pV #)⊆ π

Sp
n (U , x0). Note that p−1

V (st(V, N (V )))⊆ V by the definition of
canonical map pV .

Suppose [ f ] ∈ ker(pV #) is represented by a map f : (|∂1n+1|, o)→ (X, x0).
We will show that [ f ] ∈ π

Sp
n (U , x0). Then pV ◦ f : |∂1n+1| → |N (V )| is null-

homotopic and extends to a map h : |1n+1|→ |N (V )|. Set YV = h−1(st(V, N (V )))

so that Y = {YV | V ∈ V } is an open cover of |1n+1|.
We find a particular simplicial approximation for h using the cover Y [Munkres

1984, Theorem 16.1]: let λ be a Lebesgue number for Y so that any subset of 1n+1

of diameter less than λ lies in some element of Y . Find m ∈ N such that each
simplex in sdm 1n+1 has diameter less than λ/2. Thus the star st(a, sdm 1n+1) of
each vertex a in sdm 1n+1 lies in a set YVa ∈ Y for some Va ∈ V . The assignment
a 7→ Va on vertices extends to a simplicial approximation h′ : sdm 1n+1→ N (V )

of h, i.e., a simplicial map h′ such that

h(st(a, sdm 1n+1))⊆ st(h′(a), N (V ))= st(Va, N (V ))

for each vertex a [Munkres 1984, Lemma 14.1].
Let K = sdm 1n+1 and L = sdm ∂1n+1 so that M[k] = L ∪Kk . First, we extend

f : L→ X to a map f0 :M[0]→ X . For each vertex a in K , pick a point f0(a)∈ Va .
In particular, if a ∈ L , take f0(a) = f (a). This choice is well defined since, for
a boundary vertex a ∈ L , we have pV ◦ f (a) = h(a) ∈ st(Va, |N (V )|) and thus
f (a) ∈ p−1

V (st(Va, |N (V |)))⊆ Va .
Note that h′ maps every simplex σ = [a0, a1, . . . , ak] of K to the simplex of

N (V ) spanned by {h′(ai ) | 0≤ i ≤ k} = {Vai | 0≤ i ≤ k}. By definition of the nerve,
we have

⋂
{Vai | 0≤ i ≤ k} ̸=∅. Pick a point xσ ∈

⋂
{Vai | 0≤ i ≤ k}.

By our initial choice of refinements, we have U0 ⪯∗ V . If σ = [a0, a1, . . . , an+1]

is an (n+ 1)-simplex of K , then St(xσ , V )⊆Uσ for some Uσ ∈ U . In particular
{ f0(ai ) | 0 ≤ i ≤ n + 1} ⊆

⋃
{Vai | 0 ≤ i ≤ n + 1} ⊆ Uσ . Thus f0 maps the

0-skeleton of σ into Uσ . If 1 ≤ k ≤ n, τ is a k-face of σ ∩ L with ai ∈ τ , then
pV ◦ f0(int(τ ))= pV ◦ f (int(τ ))= h(int(τ ))⊆ h(st(ai , K ))⊆ st(Vai , |N (V )|). It
follows that

f0(τ )⊆ p−1
V (st(Vai , |N (V )|))⊆ Vai ⊆Uσ .

Thus for every n-simplex in σ ∩ L , we have f0(τ ) ⊆ Uσ . We conclude that for
every (n+ 1)-simplex σ of K , we have f0(σ ∩M[0])⊆Uσ .
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By our choice of sequence of refinements, we are precisely in the situation to
apply Lemma 4.7. Doing so, we obtain an extension fn : M[n]→ X of f such that
for every (n+ 1)-simplex σ of K , we have fn(∂σ )⊆ Uσ for some Uσ ∈ Un = U .
By Lemma 3.6, we have [ f ] = [ fn|∂1n+1] ∈ π

Sp
n (U , x0). □

Finally, both inclusions have been established and provide a proof of our main
result.

Proof of Theorem 1.1. The inclusion π
Sp
n (X, x0) ⊆ ker(9n) holds in general by

Corollary 3.11. Under the given hypotheses, the inclusion ker(9n)⊆ π
Sp
n (X, x0)

follows from Lemma 5.1. □

When considering examples relevant to Theorem 1.1, it is helpful to compare
πn-shape injectivity with the following weaker property from [Ghane and Hamed
2009].

Definition 5.2. We say a space X is n-homotopically Hausdorff at x ∈ X if no
nontrivial element of πn(X, x) has a representing map in every neighborhood of x .
We say X is n-homotopically Hausdorff if it is n-homotopically Hausdorff at each
of its points.

Clearly, πn-shape injectivity⇒ n-homotopically Hausdorff. The next example,
which highlights the effectiveness of Theorem 1.1, shows the converse is not true
even for LCn−1 Peano continua.

Example 5.3. Fix n≥ 2 and let ℓ j : Sn
→ En be the inclusion of the j -th sphere and

define f :En→En to be the shift map given by f ◦ℓ j =ℓ j+1. Let M f =En×[0, 1]/∼,
(x, 0)∼( f (x), 1) be the mapping torus of f . We identify En with the image of
En × {0} in M f and take o to be the basepoint of M f . Let α : I → M f be the
loop where α(t) is the image of (o, t). Then M f is locally contractible at all points
other than those in the image of α. Also, every point α(t) has a neighborhood
that deformation retracts onto a homeomorphic copy of En . Thus, since En is
LCn−1, so is X . It follows from Theorem 1.1 that π

Sp
n (M f , o)= ker(πn(M f , o)→

π̌n(M f , o)). In particular, the Spanier group of M f contains all elements [αk
∗ g]

where g : Sn
→ En is a based map and k ∈ Z. Using the universal covering map

E→ M f that “unwinds” α and the relation [g] = [α ∗ ( f ◦ g)] in πn(M f , o), it is
not hard to show that these are, in fact, the only elements of the n-th Spanier group.
Hence,

ker(πn(M f , o)→ π̌n(M f , o))= {[αk
∗ g] | [g] ∈ πn(En, o), k ∈ Z},

which is an uncountable subgroup. Moreover, since M f is shape equivalent to the
aspherical space S1, we have π̌n(M f , o)= 0 and thus πn(M f , o)= {[αk

∗g] | [g] ∈
πn(En, o), k ∈ Z}.
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It follows from this description that, even though M f is not πn-shape injective,
M f is n-homotopically Hausdorff. Indeed, it suffices to check this at the points
α(t), t ∈ I . We give the argument for α(0) = o, the other points are similar. If
0 ̸= h ∈ πn(M f , o) has a representative in every neighborhood of o in M f , then
clearly h ∈ ker(9n). Hence, h = [αk

∗ g] for [g] ∈ πn(En, o) and k ∈ Z. Since M f

retracts onto the circle parametrized by α, the hypothesis on h can only hold if
k = 0. However, there is a basis of neighborhoods of o in M f that deformation
retract onto an open neighborhood of o in En . Thus [g] has a representative in every
neighborhood of o in πn(En, o), giving h = [g] ∈ ker(πn(En, o)→ π̌n(En, o))= 0.

It is an important feature of Example 5.3 that M f is not simply connected and
has multiple points at which it is not semilocally πn-trivial. This motivates the
following application of Theorem 1.1, which identifies a partial converse of the
implication πn-shape injective⇒ n-homotopically Hausdorff.

Corollary 5.4. Let n ≥ 2 and X be a simply connected, LCn−1, compact Hausdorff
space such that X fails to be semilocally πn-trivial only at a single point x ∈ X.
Then for every element g ∈ ker(9n) ⊆ πn(X, x) and neighborhood V of x , g is
represented by a map with image in V . In particular, if X is n-homotopically
Hausdorff at x , then X is πn-shape injective.

Proof. Let 0 ̸= g ∈ ker(9n)⊆πn(X, x). By Theorem 1.1, g ∈π
Sp
n (X, x). Since X is

compact Hausdorff, we may replace O(X) by the cofinal subdirected order OF (X)

consisting of finite open covers U of X with the property that there is a unique
AU ∈U with x ∈ AU . For each U ∈ OF (X), we can write g=

∏mU
i=1 [αU ,i ∗ fU ,i ]

where fU ,i : Sn
→UU ,i is a non-nullhomotopic map for some UU ,i ∈U and αU ,i

is a path from x to fU ,i (d0).
Let V be an open neighborhood of x . We check that g is represented by a map

with image in V . Since X is LC0 at x , there exists an open neighborhood V ′ of x
such that any two points of V ′ may be connected by a path in V . Fix U0 ∈ OF (X)

such that AU0 ⊆ V ′. Then AV ⊆ V ′ whenever V ∈ OF (X) refines U0.
We claim that for sufficiently refined V , all of the maps fV ,i have image in V ′.

Suppose, to obtain a contradiction, there is a subset T ⊆ {V ∈ OF (X) | V ⪰ U0},
which is cofinal in OF (X) and such that for every V ∈ T there exists iV ∈
{1, 2, . . . , mV } and dV ∈ Sn such that fV ,iV (dV ) ∈UV ,i\V ′ ⊆UV ,i\AU0 . Since X
is compact, we may replace { fV ,iV (dV )} with a subnet {x j } j∈J that converges to a
point y ∈ X . Here, x j = fV j ,iV j

(dV j ) for some directed set J and monotone, final
function J→ T given by j 7→ V j . Let Y be an open neighborhood of y in X . Find
W ∈ OF (X) such that there exists W0 ∈W such that y ∈W0 and St(W0, W )⊆ Y .
Since {x j } is subnet that converges to y, there exists k ∈ J such that Vk ⪰W and
xk ∈ W0. We have xk ∈ Im( fVk ,iVk

) ⊆ UVk ,iVk
⊆ W for some W ∈ W and thus

Im( fVk ,iVk
) ⊆ UVk ,i ⊆ St(W0, W ) ⊆ Y . However, for every V ∈ OF (X), fV ,iV is
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not null-homotopic in X . Thus, since Y represents an arbitrary neighborhood of y,
X is not semilocally πn-trivial at y. By assumption, we must have x = y. Since
{x j } → x , the same argument, but where Y is replaced by V ′, shows that there
exists sufficiently refined V for which Im( fV ,iV )⊆ V ′; a contradiction. Since the
claim is proved, there exists U1 ⪰ U0 in OF (X) such that whenever V ⪰ U1, we
have Im( fV ,i )⊆ V ′ for all i ∈ {1, 2, . . . , mV }.

Fix V ⪰U1 in OF (X). For all i ∈{1, 2, . . . , mV }, we may find a path βV ,i : I→V
from x to fV ,i (d0). Since X is simply connected, we have [αV ,i∗ fU ,i ]=[βV ,i∗ fU ,i ]

for all i . Thus g is represented by
∏mV

i=1 βV ,i ∗ fV ,i , which has image in V . □

Remark 5.5 (topologies on homotopy groups). Given a group G and a collection
of subgroups {N j | j ∈ J } of G such that for all j, j ′ ∈ J , there exists k ∈ J
such that Nk ⊆ N j ∩ N j ′ , we can generate a topology on G by taking the set
{gN j | j ∈ J, g ∈ G} of left cosets as a basis. We can apply this to both the
collection of Spanier subgroups π

Sp
n (U , x0) and the collection of kernels ker(pU #)

to define two natural topologies on πn(X, x0):

(1) The Spanier topology on πn(X, x0) is generated by the left cosets of Spanier
groups πn(U , x0) for U ∈ O(X).

(2) The shape topology on πn(X, x0) is generated by left cosets of the kernels
ker(pU #) where (U , U0) ∈3. Equivalently, the shape topology is the initial
topology with respect to the map 9n where the groups πn(|N (U )|, U0) are
given the discrete topology and π̌n(X, x0) is given the inverse limit topology.

Lemma 3.10 ensures the Spanier topology is always finer than the shape topology.
Lemma 5.1 then implies that, whenever X is paracompact, Hausdorff, and LCn−1,
the two topologies agree. Moreover, πn(X, x0) is Hausdorff in the shape topology
if and only if X is πn-shape injective.

6. When is 9n an isomorphism?

It is a result of Kozlowski and Segal [1978] that if X is paracompact Hausdorff
and LCn , then 9n : πn(X, x)→ π̌n(X, x) is an isomorphism. This result was first
proved for compact metric spaces in [Kuperberg 1975]. The assumption that X is
LCn assumes that small maps Sn

→ X may be contracted by small null-homotopies.
However, if En is the n-dimensional earring space, then the cone CEn is LCn−1

but not LCn . However, CEn is contractible and so 9n is an isomorphism of trivial
groups. Certainly, many other examples in this range exist. Our Spanier group-
based approach allows us to generalize Kozlowski–Segal’s theorem in a way that
includes this example by removing the need for “small” homotopies in dimension n.
In this section, when U is an open cover of a space X and a distinguished element
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U0 ∈ U containing the basepoint x0 has been established or is clear from context,
we will often write U to represent the pair (U , U0) ∈3.

Lemma 6.1. Let n ≥ 1. Suppose that X is paracompact, Hausdorff , and LCn−1.
If ([ fU ])U ∈3 ∈ π̌1(X, x0), then for every U ∈3, there exists [g] ∈ πn(X, x) such
that (pU )#([g])= [ fU ].

Proof. With (U , U0) ∈3 and pU fixed, consider a representing map

fU : (|∂1n+1|, o)→ (|N (U )|, U0).

Let U ′ = {p−1
U (st(U, |N (U )|)) | U ∈ U }. Since p−1

U (st(U, |N (U )|)) ⊆ U for
all U ∈ U , we have U ⪯ U ′. Applying Lemmas 4.2 and 4.5 we can choose
the following sequence of refinements of U ′. First, we choose a star refinement
U ′ ⪯∗∗ W so that for every W ∈W , there exists U ′ ∈U ′ such that St(W, W )⊆U ′.
In this case, we can choose the projection map pU ′W : |N (W )| → |N (U ′)| so
that if pU ′W (W )=U ′ on vertices, then St(W, W )⊆U ′ in X . This choice will be
important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence of
a refinements

W = Wn ⪯∗ Vn ⪯
n−1
∗

Wn−1 ⪯∗ · · · ⪯
2
∗

W2 ⪯∗ V2 ⪯
1
∗

W1 ⪯∗ V1 ⪯
0
∗

W0

followed by one last refinement W0 ⪯∗ V0 = V . Let V0 ∈ V be any set containing
x0 and recall that since X is paracompact Hausdorff (V , V0) ∈3. For some choice
of canonical map pV , we have p−1

V (st(V, N (V )))⊆ V for all V ∈ V .
Recall that we have assumed the existence of a map

fV : (∂1n+1, o)→ (|N (V )|, V0)

such that pU V #([ fV ])=[ fU ]. Set YV = f −1
V (st(V, N (V ))) so that Y ={YV |V ∈V }

is an open cover of ∂1n+1. As before, we find a simplicial approximation for fV .
Find m ∈ N such that the star st(a, sdm ∂1n+1) of each vertex a in sdm ∂1n+1

lies in a set YVa ∈ Y for some Va ∈ V . Since fV (o) = V0, we may take Vo =

V0. The assignment a 7→ Va on vertices extends to a simplicial approximation
f ′ : sdm ∂1n+1→ |N (V )| of fV , i.e., a simplicial map f ′ such that

fV (st(a, sdm ∂1n+1))⊆ st( f ′(a), |N (V )|)= st(Va, |N (V )|)

for each vertex a.
We begin to define g with the constant map {o} → X sending o to x0. In

preparation for applications of Lemma 4.6, set K = sdm ∂1n+1 and L = {o} so
that K [k] = Kk . First, we define a map g0 : M[0] → X by picking, for each
vertex a ∈ K0, a point g0(a) ∈ Va . In particular, set g0(o) = x0. This choice is
well defined since we have pV (x0) = V0 ∈ st(Vo, N (V )) and thus g0(o) = x0 ∈

p−1
V (st(Vo, N (V ))) ⊆ Vo. Note that f ′ maps every simplex σ = [a0, a1, . . . , ak]

of K to the simplex of |N (V )| spanned by {Vai | 0 ≤ i ≤ k}. By definition of the
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nerve, we have
⋂
{Vai | 0 ≤ i ≤ k} ̸= ∅. Pick a point xσ ∈

⋂
{Vai | 0 ≤ i ≤ k}.

By our initial choice of refinements, we have U0 ⪯∗ V . If σ = [a0, a1, . . . , an]

is a n-simplex of K , then St(xσ , V ) ⊆ U0,σ for some U0,σ ∈ U0. In particular
{g0(ai ) | 0≤ i ≤ n+ 1} ⊆

⋃
{Vai | 0≤ i ≤ n} ⊆U0,σ . Thus g0 maps the 0-skeleton

of σ into U0,σ . If o ∈ σ , then g0(o) ∈ p−1
V (st(Vo, N (V )))⊆ Vo ⊆U0,σ . Hence, for

every n-simplex σ of K , we have g0(σ ∩M[0])⊆U0,σ .
We are now in the situation to recursively apply Lemma 4.6. This is similar to

the application in the proof of Lemma 5.1 with the dimension n+ 1 shifted down
by one so we omit the details. Recalling that M[n] = sdm ∂1n+1, we obtain an
extension g : K = M[n] → X of g0 such that for every n-simplex σ of K , we have
g(σ )⊆Wσ for some Wσ ∈W = Un .

With g being defined, we seek show that fU ≃ pU ◦ g. Since f ′ ≃ fV (by
simplicial approximation), pU V ≃ pU U ′ ◦ pU ′W ◦ pW V (for any choice of projection
maps), and pU V ◦ fV ≃ fU (for any choice of projection pU V ), it suffices to show
that pU U ′ ◦ pU ′W ◦ pW V ◦ f ′≃ pU ◦g. We do this by proving that the simplicial map
F = pU U ′◦ pU ′W ◦ pW V ◦ f ′ : K→|N (U )| is a simplicial approximation for pU ◦g.
Recall that this can be done by verifying the “star-condition” pU ◦ g(st(a, K ))⊆

st(F(a), |N (U )|) for any vertex a ∈ K [Munkres 1984, Chapter 2, Section 14].
Since n ≥ 1, we have W ⪯∗∗ V . Hence, just like our choice of pU ′W , we may
choose pW V so that whenever pW V (V )=W , then St(V, V )⊆W . Also, we choose
pU U ′ to map p−1

U (st(U, |N (U )|)) 7→U on vertices.
Fix a vertex a0 ∈ K . To check the star-condition, we’ll check that pU ◦ g(σ )⊆

st(F(a0), |N (U )|) for each n-simplex σ having a0 as a vertex. Pick an n-simplex
σ = [a0, a1, . . . , an] ⊆ K having a0 as a vertex. Recall that f ′(ai )= Vai for each i .
Set pW V (Vai )=Wi and pU ′W (Wi )= p−1

U (st(Ui , |N (U )|)) ∈U ′ for some Ui ∈U .
Then F(ai )=Ui for all i . It now suffices to check that pU ◦g(σ )⊆ st(U0, |N (U )|).
Recall that by our choice of pU ′W , we have St(W0, W ) ⊆ p−1

U (st(U0, |N (U )|)).
Thus it is enough to check that g(σ )⊆ St(W0, W ). By construction of g, we have
g(σ ) ⊆ Wσ for some Wσ ∈ W . Since g(a0) ∈ W0 ∩Wσ , we have g(σ ) ⊆ Wσ ⊆

St(W0, W ), completing the proof. □

Finally, we prove our second result, Theorem 1.2.

Proof of Theorem 1.2. Since X is paracompact, Hausdorff, LCn−1, we have
π

Sp
n (X, x0) = ker(9n) by Theorem 1.1. Since X is semilocally πn-trivial, we

have π
Sp
n (U , x0) = 1 for some U ∈ 3. It follows that 9n is injective. More-

over, by Lemma 5.1, we may find V ∈ 3 with ker(pV #) ⊆ π
Sp
n (U , x0). Thus

pV # : πn(X, x0)→ πn(|N (V )|, V0) is injective. Let ([ fU ])U ∈3 ∈ π̌n(X, x0). By
Lemma 6.1, for each U ∈3, there exists [gU ] ∈ πn(X, x0) such that pU ([gU ])=

[ fU ]. If V ⪯W , then we have

pV #([gV ])= [ fV ] = pV W #([ fW ])= pV W # ◦ pW #([gW ])= pV #([gW ]).
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Since pV # is injective, it follows that [gW ] = [gV ] whenever V ⪯ W . Setting
[g] = [gV ] gives 9n([g])= ([ fU ])U ∈3. Hence, 9n is surjective. □

7. Examples

Example 7.1. Fix n ≥ 2. When X is a metrizable LCn−1 space, the cone C X
and unreduced suspension SX are LCn−1 and semilocally πn-trivial but need not
be LCn . This occurs in the case X = En or if X = Y ∨En where Y is a CW-complex.
In such cases, 9n :πn(SX)→ π̌n(SX) is an isomorphism. One point unions of such
cones and suspensions, e.g., C X ∨CY or C X ∨ SY also meet the hypotheses of
Theorem 1.2 (checking this is fairly technical [Brazas 2021]) but need not be LCn .

Example 7.2. The converse of Theorem 1.2 does not hold. For n ≥ 2, En is LCn−1

but is not semilocally πn-trivial at the wedgepoint x0. However, 9n : πn(En, x0)→

π̌n(En, x0) is an isomorphism where both groups are canonically isomorphic to ZN

[Eda and Kawamura 2000a]. Additionally, for the infinite direct product
∏

N Sn ,
9k : πk

(∏
N Sn, x0

)
→ π̌k

(∏
N Sn, x0

)
is an isomorphism for all k ≥ 1 even though∏

N Sn is not LCk−1 when k− 1≥ n.

Example 7.3. We can also modify the mapping torus M f from Example 5.3 so
that 9n becomes an isomorphism (recall that n ≥ 2 is fixed). Let X = M f ∪CEn

be the mapping cone of the inclusion En → M f . For the same reason M f is
LCn−1, the space X is LCn−1. Moreover, if U is a neighborhood of α(t) that
deformation retracts onto a homeomorphic copy of En , then any map Sn

→U may
be freely homotoped “around” the torus and into the cone. It follows that X is
semilocally πn-trivial. We conclude from Theorem 1.2 that 9n : πn(X)→ π̌n(X) is
an isomorphism. Since sufficiently fine covers of X always give nerves homotopy
equivalent to S1

∨ Sn+1, we have π̌n(X)= 0. Thus πn(X)= 0.

Example 7.4. Let n ≥ 2 and X = E1 ∨ Sn (see Figure 2). Note that because E1 is
aspherical [Cannon et al. 2002; Curtis and Fort 1957], X is semilocally πn-trivial.
However, X is not LC1 because it has E1 as a retract. It is shown in [Brazas
2021] that πn(X)∼=

⊕
π1(E1)

πn(Sn)∼=
⊕

π1(E1)
Z and that 9n : πn(X)→ π̌n(X) is

injective. In particular, we may represent elements of πn(X) as finite-support sums∑
β∈π1(E1)

mβ where mβ ∈ Z. We show that 9n is not surjective.
Identify π1(X) with π1(E1) and recall from [Eda 1992] that we can represent

the elements of π1(E1) as countably infinite reduced words indexed by a countable
linear order (with a countable alphabet β1, β2, β3, . . . ). Here β j is represented by
a loop S1

→ E1 going once around the j-th circle. Let X j be the union of Sn and
the largest j circles of E1 so that X = lim

←−− j X j . Identify π1(X j ) with the free group
F j on generators β1, β2, . . . β j and note that πn(X j )∼=

⊕
F j

Z. Thus we may view
an element of πn(X j ) as a finite-support sums

∑
w∈F j

mw of integers indexed over
reduced words in F j . Let d j+1, j : F j+1→ F j be the homomorphism that deletes the
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Figure 2. The one point union E1 ∨ S2.

letter β j+1. Consider the inverse limit π̌1(X)= lim
←−− j (F j , d j+1, j ). The map X→ X j

that collapses all but the first j -circles of E1 induces a homomorphism d j :π1(X)→

F j . There is a canonical homomorphism φ : π1(X)→ π̌1(X) = lim
←−− j (F j , d j+1, j )

given by φ(β) = (d1(β), d2(β), . . . ), which is known to be injective [Morgan
and Morrison 1986] but not surjective. For example, if xk =

∏k
j=1[β1, β j ], then

(x1, x2, x3, x4, . . . ) is an element of π̌1(X) not in the image of φ.
The bonding map b j+1, j : πn(X j+1)→ πn(X j ) sends a sum

∑
w∈F j+1

mw to∑
v∈F j

pv where pv =
∑

d j+1, j (w)=v mw. Similarly, projection map b j : πn(X)→

πn(X j ) sends the sum
∑

β∈π1(X) nβ to
∑

v∈F j
mv where mv =

∑
d j (β)=v mβ . Let

y j ∈ πn(X) be the sum whose only nonzero coefficient is the x j -coefficient, which
is 1. Since d j+1, j (x j+1) = x j , it’s clear that (y1, y2, y3, . . . ) ∈ π̌n(X). Suppose
9n

(∑
β mβ

)
= (y1, y2, y3, . . . ). Writing

∑
β mβ as a finite sum

∑r
i=1 mβi for

nonzero mβi , we must have
∑

d j (βi )=x j
mβi = 1 for all j ∈ N. Since there are only

finitely many βi involved, there must exist at least one i for which d j (βi ) = x j

for infinitely many j . For such i , we have φ(βi ) = (x1, x2, x3, . . . ), which, as
mentioned above, is impossible. Hence 9n is not surjective.

The previous example shows why we cannot remove the LCn−1 hypothesis in
Theorem 1.2. Since we weakened the hypothesis from [Kozlowski and Segal 1978]
in dimension n and no hypothesis in dimension n is required for Theorem 1.1, one
might suspect that we might be able to remove the dimension n hypothesis com-
pletely. The next example, which is a higher analogue of the harmonic archipelago
[Bogley and Sieradski 1998; Conner et al. 2015; Karimov and Repovš 2012] shows
why this is not possible.

Example 7.5. Let n≥ 2 and ℓ j : Sn
→ En be the inclusion of the j -th n-sphere in En .

Let X be the space obtained by attaching (n+1)-cells to En using the attaching
maps ℓ j . Since En is LCn−1, it follows that X is LCn−1. However, X is not
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semilocally πn-trivial at the wedgepoint o of En . Indeed, the infinite concatenation
maps

∏
j≥k ℓ j = ℓk · ℓk+1 · · · are not null-homotopic (using a standard argument

that works for the harmonic archipelago) but are all homotopic to each other. Thus,
πn(X, o) ̸= 0. However, for sufficiently fine open covers U ∈ O(X), |N (U )|

is homotopy equivalent to a wedge of (n + 1)-spheres and thus π̌n(X, o) = 0.
Therefore, despite X being LCn−1, 9n is not an isomorphism. In fact, πn(X, o)=

π
Sp
n (X, o) = ker(9n). The reader might also note that since En−1 is (n − 1)-

connected and πn(En, o) ∼= Hn(En) ∼= ZN, X will also be (n − 1)-connected. A
Meyer–Vietoris sequence argument similar to that in [Karimov and Repovš 2012]
can then be used to show πn(X, o)∼= Hn(X)∼= ZN/⊕N Z.
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