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On maps with continuous path lifting

by

Jeremy Brazas (West Chester, PA) and Atish Mitra (Butte, MT)

Abstract. We study a natural generalization of covering projections defined in terms
of unique lifting properties. A map p : E → X has the continuous path-covering property if
all paths in X lift uniquely and continuously (rel. basepoint) with respect to the compact-
open topology. We show that maps with this property are closely related to fibrations with
totally path-disconnected fibers and to the natural quotient topology on the homotopy
groups. In particular, the class of maps with the continuous path-covering property lies
properly between Hurewicz fibrations and Serre fibrations with totally path-disconnected
fibers. We extend the usual classification of covering projections to a classification of
maps with the continuous path-covering property in terms of topological π1: for any path-
connected Hausdorff space X, maps E → X with the continuous path-covering property
are classified up to weak equivalence by subgroups H ≤ π1(X,x0) with totally path-
disconnected coset space π1(X,x0)/H. Here, weak equivalence refers to an equivalence
relation generated by formally inverting bijective weak homotopy equivalences.

1. Introduction. The breadth of the applications of covering space the-
ory has motivated the development of many useful generalizations. Perhaps
most historically prominent is Spanier’s classical treatment of Hurewicz fi-
brations with totally path-disconnected fibers [35, Chapter 2]. Unfortunately,
since fibrations are defined abstractly in terms of homotopy lifting with re-
spect to arbitrary spaces, it is not possible to extend the usual classification
of covering projections to classify these maps up to homeomorphism, i.e.
deck transformation. Indeed, there exist bijective fibrations E → X of met-
ric spaces which are not homeomorphisms [35, Example 2.4.8].

In this paper, we identify and classify a natural class of maps that lies
properly between Hurewicz and Serre fibrations with totally path-discon-
nected fibers, namely, those maps that satisfy the following property: a map
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p : E → X has the continuous path-covering property if for every e ∈ E, all
paths α : ([0, 1], 0)→ (X, p(e)) have a unique lift α̃ : ([0, 1], 0)→ (E, e) such
that the lifting function α 7→ α̃ is continuous with respect to the compact-
open topology on based path spaces (Definition 3.1).

We note that there is no single, best, or end-all generalized covering space
theory since one must choose the properties and structures that one cares
about according to intended applications. The literature on the subject is
vast, and we do not attempt to give a complete survey here. We briefly
mention that there are many natural approaches closely related to shape
theory such as R. H. Fox’s theory of overlays [26]. Similar approaches using
pro-groups or other algebraic structures in place of the usual fundamental
group are considered and compared in [1, 29, 30, 37] and the references
therein. Covering theories for categories other than the usual topological
category, such as uniform spaces [3, 10] and topological groups [2], have
also appeared. The approach we take is motivated by the ongoing develop-
ment of topological methods for studying and applying the algebraic and
topological properties of fundamental groups. In particular, our approach is
most closely related to the theory of semicoverings [5, 25, 34]. Semicoverings
and topologized fundamental groups have been used to fill in longstanding
gaps in general topological group theory [6], which has not been achieved
using purely topological methods. We expect similar applications to follow
from the strengthened relationship between covering-theoretic methods and
topological group theory developed in the current paper.

Hurewicz fibrations with totally path-disconnected fibers form a class
of maps with many nice internal properties that includes all inverse limits
of covering projections. In recent work, the authors of [14] have identified
sufficient compactness conditions on the fibers of such a fibration p : E → X
to ensure that p is equivalent to an inverse limit of finite-sheeted covering
maps. When local triviality or compactness conditions on the fibers are not
assumed, it becomes an onerous task to verify that a given map p : E → X
with unique lifting of all paths (i.e. with the path-covering property) is a
Hurewicz fibration. In fact, when X is the closed unit disk and E is locally
path-connected, this verification is equivalent to a curiously difficult open
problem posed by Jerzy Dydak [16] (see Problem 4.6 below). The apparent
difficulty stems from the fact that if one does not already know that p is
an inverse limit of fibrations, then one must verify the homotopy lifting
property with respect to all topological spaces Z. Even if one restricts to
a convenient category of spaces, one must still address spaces Z in which
convergent nets are not always realized as the endpoints of some convergent
net of paths. Since our goal is to obtain a theory that supports application of
(topologized) homotopy groups, it is clear that we must weaken the highly
demanding definition of a Hurewicz fibration.
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Serre fibrations with totally path-disconnected fibers form a significantly
larger class of maps than their Hurewicz counterparts. Included among these
are the generalized regular covering maps defined originally by Fischer and
Zastrow in [24] and later in [11] using a different but ultimately equivalent
approach. Such maps were extended to the non-regular case in [7] and char-
acterized completely within the π1-subgroup lattice for metric spaces in [9].
Such generalized covering maps provide a theory which has been proven to
retain the largest possible π1-subgroup lattice among any other theories that
employ homotopy lifting [7]. For instance, such maps can retain non-trivial
information about the π1-subgroup lattice even for spaces with trivial shape-
type. Consequently, the intended application of this locally path-connected
approach is to provide a highly refined theory to aid the progressive work
on the infinitary-algebraic structure of homotopy groups of Peano continua
and other locally path-connected spaces.

In Section 3, we develop the basic theory of the continuous path-covering
property. We observe that, just as with fibrations, maps with the continu-
ous path-covering property are closed under composition, infinite products,
pullbacks, and inverse limits. Moreover, these maps even enjoy the two-
out-of-three property (see Lemma 3.5). In Section 4, we give the following
comparison of maps with unique lifting properties.

Theorem 1.1. Consider the following properties of a map p : E → X:

(1) p is a Hurewicz fibration with the unique path-lifting property,
(2) p has the continuous path-covering property,
(3) p is a Serre fibration with the unique path-lifting property,
(4) p has the path-covering property.

Then (1)⇒(2)⇒(3)⇒(4).

Following the proof of Theorem 1.1, we provide examples to show that the
conditionals (1)⇒(2) and (2)⇒(3) are not reversible. Hence, the continuous
path-covering property lies properly between Hurewicz and Serre fibrations
with totally path-disconnected fibers. To promote the fundamental nature
of Dydak’s Problem, referenced above, we show that an affirmative answer
to this problem is equivalent to the converse of (3)⇒(4). We also identify a
consequence of a positive answer to Dydak’s Problem within the context of
classical covering space theory (Corollary 4.10).

In Section 5, we consider the homotopy groups πn(X,x0) with the nat-
ural quotient topology inherited from the compact-open topology on the
nth iterated loop space Ωn(X,x0) [21, 27]. With this topology, the homo-
topy groups become functors to the category of quasitopological groups and
continuous homomorphisms. We show that a map p : E → X with the con-
tinuous path-covering property induces a closed embedding on fundamental
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groups and an isomorphism of quasitopological abelian groups on the higher
homotopy groups (Theorem 5.2). Moreover, for any e ∈ E, the coset space
π1(X,x0)/p#(π1(E, e)) is totally path-disconnected and is homeomorphic to
the fibers of p when the path endpoint evaluation map ev1 : P (E, e0)→ E,
ev1(α) = α(1) is a topological quotient map (Theorem 5.4). The topological
property “ev1 : P (Z, z) → Z is quotient” of a space Z is a generalization
of a space being “path-connected and locally path-connected”, which arises
naturally within our work.

Section 6 is dedicated to a proof of our classification theorem. Just as
with Serre/Hurewicz fibrations with unique path lifting, it is not possible
to extend the traditional classification of covering projections in a way that
classifies all maps with the continuous path-covering property up to hom-
eomorphism (see Example 6.5). Therefore, to identify a suitable and prac-
tical classification, we employ a technique from model category theory [33],
namely, “localization at the weak homotopy equivalences”, which refers to
the formal inversion of weak homotopy equivalences to generate an equiva-
lence relation. A simple weak equivalence between two maps pi : Ei → X,
i ∈ {1, 2}, with the continuous path-covering property consists of a commu-
tative diagram

E1

p1
!!

E3
f1
oo

p3
��

f2
// E2

p2
}}

X

where p3 also has the continuous path-covering property and f1, f2 are bijec-
tive weak homotopy equivalences (in fact, they necessarily induce topological
isomorphisms on all homotopy groups). Then p1, p2 are weakly equivalent if
they are connected by a finite sequence of simple weak equivalences. Our
main classification result is the following.

Theorem 1.2. Suppose (X,x0) is a path-connected Hausdorff space and
H ≤ π1(X,x0). There exists a map p : (E, e0) → (X,x0) with the con-
tinuous path-covering property, unique up to weak equivalence, such that
p#(π1(E, e0)) = H if and only if π1(X,x0)/H is totally path-disconnected.
Moreover,

(1) among the maps p : E → X for which ev1 : P (E, e) → E is quotient,
the maps p are classified up to equivalence,

(2) every map p : E → X with the continuous path-covering property is
weakly equivalent to another p′ : E′ → X where ev1(E

′, e′) → E′ is
quotient.

The proof of the existence portion of Theorem 1.2 requires a careful
analysis of the natural quotient construction of covering spaces. A surprising
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consequence of our proof of (2) of Theorem 1.2 is that two weakly equivalent
maps can always be related by a single simple weak equivalence. By em-
ploying topologized fundamental group theory [8], another immediate con-
sequence of this theorem is that any space X whose fundamental group
naturally injects into the first shape group admits a ‘universal weak equiva-
lence class, i.e. a map E → X with the continuous path-covering property
where E is simply connected. For instance, all one-dimensional metric spaces
and planar sets admit such a map.

If p : E → X has the continuous path-covering property and non-discrete
fibers, then E will rarely be locally path-connected. In a sense, this is the
price one must pay to ensure that paths lift continuously. However, (2) of
Theorem 1.2 still allows for a certain level of topological control, namely,
that we may always choose E to have the slightly weaker property that
ev1 : P (E, e0)→ E is quotient. In summary, (1) and (2) of Theorem 1.2 show
that our classification up to weak equivalence restricts to a more traditional
classification “up to homeomorphism” when we restrict to the category of
spaces E for which ev1 : P (E, e)→ E is quotient.

Finally, in Section 7, we prove the following theorem, which identifies
natural situations where a weak equivalence class may be represented by an
inverse limit of covering projections/semicovering maps.

Theorem 1.3. Suppose p : (E, e0) → (X,x0) has the continuous path-
covering property where X is locally path-connected and Hausdorff, and sup-
pose H = p#(π1(E, e0)) is a normal subgroup of π1(X,x0).

(1) If π1(X,x0)/H is a compact group, then p is weakly equivalent to an
inverse limit of finite-sheeted, regular covering projections, restricted to
a path component of the domain.

(2) If E is simply connected, i.e. H = 1, and π1(X,x0) is locally compact,
then p is weakly equivalent to an inverse limit of semicovering maps,
restricted to a path component of the domain.

In Section 8, we conclude the paper with a single diagrammatic summary
of our results. This diagram, which incorporates our main results, illustrates
the relationships between the maps considered throughout this paper as
well as the relationships between these maps and the topological-algebraic
properties of π1(X,x0).

2. Notation and preliminaries

2.1. Mapping spaces and path spaces. If X and Y are spaces, Y X

denotes the set of continuous maps X → Y with the compact-open topology,
and for A ⊆ X, B ⊆ Y , (Y,B)(X,A) denotes the subspace of relative maps
f ∈ Y X satisfying f(A) ⊆ B. In particular, Ωn(X,x), n ∈ N, will denote the
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relative mapping space (X,x)(I
n,∂In) where I = [0, 1] is the closed unit inter-

val. The constant mapX → Y at a point y ∈ Y will be denoted cy. As special
cases, we define P (X) = XI and P (X,x) = (X,x)(I,0). If α, β : I → X are
paths such that α(1) = β(0), then α · β : I → X denotes the standard
concatenation and α−(t) = α(1− t) denotes the reverse path of α.

If f : X → Y is a map, then P (f) : P (X) → P (Y ) denotes the induced
map P (f)(α) = f ◦ α, which also restricts to a map P (X,x)→ P (X, f(x)).
The endpoint evaluation map is the map ev1 : P (X,x)→ X, ev1(α) = α(1),
which is continuous and onto when X is path-connected. If X is locally
path-connected, then ev1 is an open surjection. Frequently, we will refer to
the following property of X: “ev1 : P (X,x) → X is a topological quotient
map” (this property holds for all points x ∈ X if it holds for at least one).
The property of ev1 being a quotient map is a natural generalization of the
joint property “path-connected and locally path-connected”. Path-connected
and non-locally-path-connected spaces for which ev1 is quotient include all
non-locally-path-connected, contractible spaces and many spaces used in the
theory and applications of generalized covering space theories and topolo-
gized fundamental groups; cf. [5, 6].

We refer to [35] as a standard reference on covering space theory. We
consider the following properties, each of which is held by all covering pro-
jections.

Definition 2.1. Let E and X be topological spaces.

(1) A map p : E → X has the unique path-lifting property if for each e ∈ E,
the induced map P (p) : P (E, e)→ P (X, p(e)) is injective.

(2) A map p : E → X has the path-covering property if for each e ∈ E, the
induced map P (p) : P (E, e)→ P (X, p(e)) is bijective.

We will always assume the spaces E and X are non-empty and path-
connected. If p : E → X has the path-covering property, E ̸= ∅, and X is
path-connected, then p must necessarily be surjective.

2.2. Topologized homotopy groups. The nth homotopy group
πn(X,x0) will be equipped with the natural quotient topology inherited from
Ωn(X,x0) so that the natural map π : Ωn(X,x0) → πn(X,x0), π(α) = [α]
sending a map to its homotopy class is a topological quotient map. It is
known that πn(X,x0) is a quasitopological group in the sense that inversion
is continuous and left and right translations [α] 7→ [α][β] and [α] 7→ [β][α]
for fixed β ∈ Ωn(X,x0) are also continuous. Although πn(X,x) can fail to
be a topological group for any n ≥ 1 [20, 21], it is a homogeneous space,
which is discrete if X is locally contractible [12, 27].

If f : (X,x) → (Y, y) is a based map, then the homomorphism f# :
πn(X,x)→ πn(Y, y) is continuous. An isomorphism in the category of quasi-
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topological groups is a group isomorphism which is also a homeomorphism.
If f induces an isomorphism f# : πn(X,x) → πn(Y, y) of quasitopological
groups for all n ≥ 1, then we call f a weak topological homotopy equivalence.

If H ≤ π1(X,x0) is a subgroup, the coset space π1(X,x0)/H inherits the
quotient topology from π1(X,x0). The translation homeomorphism [α] 7→
[α · β] of π1(X,x0) descends to a homeomorphism H[α] 7→ H[α · β] on
π1(X,x0)/H. Hence, π1(X,x0)/H is a homogeneous space, which is T1 (resp.
discrete) if and only if H is closed (resp. open). We refer to [8] for more on
π1 with the quotient topology.

2.3. Fibrations with the unique path-lifting property

Definition 2.2. A map p : E → X has the homotopy lifting property
with respect to a space Z if for every pair of maps f : Z → E, g : Z×I → X
such that p ◦ f(z) = g(z, 0), there is a map g̃ : Z × I → E such that
p ◦ g̃ = g. A Hurewicz fibration is a map with the homotopy lifting property
with respect to all topological spaces. A Serre fibration is a map with the
homotopy lifting property with respect to In for all n ≥ 0.

Every covering projection in the classical sense is a Hurewicz fibration
with discrete fibers, and every Hurewicz fibration is a Serre fibration.

Lemma 2.3 ([35, proof of 2.2.5]). A Serre fibration p : E → X has the
unique path-lifting property if and only if every fiber of p is totally path-
disconnected.

If a map p : E → X has the path-covering property and also the homo-
topy lifting property with respect to I, then all path-homotopies in X lift
uniquely (rel. basepoint) to path-homotopies in E. Hence, standard argu-
ments in covering space theory give the following lemma.

Lemma 2.4. Suppose p : E → X has the path-covering property and the
homotopy lifting property with respect to I, e.g. if p is a Serre fibration with
totally path-disconnected fibers. Then for all e ∈ E,

(1) the induced homomorphism p# : π1(E, e)→ π1(X, p(e)) is injective,
(2) the unique lift α̃ ∈ P (E, e) of a loop α ∈ Ω(X, p(e)) is a loop based at e

if and only if [α] ∈ p#(π1(E, e)).
Moreover, if p# : π1(E, e)→ π1(X, p(e)) is surjective, then p is a continuous
bijection.

3. Maps with the continuous lifting property. The goal of this
section is to develop the basic properties of maps with the following property.

Definition 3.1. A map p : E → X has the continuous path-covering
property if for every e ∈ E, the induced function P (p) : P (E, e)→ P (X, p(e))
is a homeomorphism.
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Remark 3.2. Certainly, we have:

(1) continuous path-covering ⇒ (2) path-covering ⇒ (3) unique path-lifting.

However, none of the reverse implications hold in general. For instance,
any restriction of a covering projection which is not a covering projection
itself satisfies (3) but not (2). The generalized universal covering of the Infi-
nite Earring Space constructed in [24] satisfies (2) but not (1); it is described
in more detail below (see Example 4.5).

Proposition 3.3. If p : E → X has the unique path-lifting property, then
for every x ∈ X the fiber p−1(x) is totally path-disconnected (and hence T1).
Moreover, if X is T1, then so is E.

Proof. If p−1(x) admitted a non-constant path α : I → p−1(x), then α
and the constant path at α(0) are distinct lifts of p ◦α, a violation of unique
path lifting. Every totally path-disconnected space is T1 since a non-T1 space
must contain a homeomorphic copy of a non-discrete 2-point space, which
is necessarily path-connected. Moreover, if p(e) = x and {x} is closed, then
{e} is closed in the closed fiber p−1(x) and thus closed in E.

Recall that an infinite product of covering projections need not be a
covering projection; any infinite power of the exponential map R → S1

provides an example.

Lemma 3.4. The following classes of maps are closed under arbitrary
direct products:

(1) maps with the unique path-lifting property,
(2) maps with the path-covering property,
(3) maps with the continuous path-covering property,
(4) Hurewicz fibrations with totally path-disconnected fibers,
(5) Serre fibrations with totally path-disconnected fibers.

Proof. The first three cases are clear since the based path-space func-
tors (X,x) 7→ P (X,x) preserve direct products [19, Proposition 3.4.5]. The
last two follow from the fact that (i) if maps pj : Xj → Yj have the homo-
topy lifting property with respect to a space Z, then so does the product
map

∏
j pj , and (ii) products of totally path-disconnected spaces are totally

path-disconnected.

Covering projections also fail to be closed under function composition.
Maps with the continuous path-covering property, in fact, satisfy the “two-
out-of-three” condition in the next lemma. Since the various parts of the
statement are straightforward to verify from the definitions, we omit the
proof.
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Lemma 3.5. Suppose f : X → Y and g : Y → Z are maps of non-empty,
path-connected spaces.

(1) If f and g have the continuous path-covering property, then so does g◦f .
(2) If g and g◦f have the continuous path-covering property, then so does f .
(3) If g is surjective and f and g ◦ f have the continuous path-covering

property, then so does g.

Moreover, the statement holds if we replace “continuous path-covering prop-
erty” with “path-covering property”.

Remark 3.6. Serre/Hurewicz fibrations are closed under composition,
and if g and g ◦ f are Serre/Hurewicz fibrations, then so is f . Although
the authors do not know of a counterexample, we find it unlikely that these
classes of maps are closed under the third combination.

The cone over a space X is the quotient space CX = X×I/X×{0}. The
point v0 ∈ CX which is the image of X × {0} is taken to be the basepoint
of CX.

Definition 3.7. Let (J,≤) be a directed set and K = J ∪ {∞} be the
space obtained by adding one maximal point. Give K the topology generated
by the sets {k} and Vk = {∞} ∪ {j ∈ J | j > k} for k < ∞. The directed
arc-fan over J is the cone over K, i.e. the quotient space F (J) = K×I/K×
{0} with basepoint v0. We will typically identify K × (0, 1] with its image
in F (J).

Remark 3.8. Standard exponential laws for spaces imply that the con-
vergent nets {αj}j∈J → α in P (X,x) are in bijective correspondence with
based maps (F (J), v0)→ (X,x). Hence, a map p : E → X has the continu-
ous path-covering property if and only if for every e ∈ E and directed set J ,
the map F : (E, e)(F (J),v0) → (X, p(e))(F (J),v0), F (β) = p ◦ β, is a bijection.
If X is a metric space, then the compact-open topology on P (X,x) agrees
with the topology of uniform convergence and one need only consider maps
F (ω)→ X on the directed fan F (ω) indexed by the natural numbers.

In the remainder of this section, we show that maps E → X with the
continuous path-covering property also lift maps Z → X from many other
spaces Z both uniquely and continuously.

Lemma 3.9. Let Z be a compact Hausdorff space and z ∈ Z. If p : E → X
has the continuous path-covering property, then for every e ∈ E, the induced
map F : (E, e)(CZ,v0) → (X, p(e))(CZ,v0), F (β) = p◦β, is a homeomorphism.

Proof. Fix e ∈ E. By assumption, P (p) : P (E, e) → P (X, p(e)) is a
homeomorphism so it follows from functoriality that P (p)Z : P (E, e)Z →
P (X, p(e))Z is a homeomorphism as well. We call upon some elementary facts
related to exponential laws in the category of topological spaces. Since Z is
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compact Hausdorff, for any based space (A, a), the mapping space P (A, a)Z
is naturally homeomorphic to the relative mapping space (A, a)(Z×I,Z×{0}),
which is, in turn, naturally homeomorphic to the based mapping space
(A, a)(CZ,v0). It follows that F : (E, e)(CZ,v0) → (X, p(e))(CZ,v0) is a homeo-
morphism.

P (E, e)Z

∼=
��

P (p)Z
// P (X, p(e))Z

∼=
��

(E, e)(Z×I,Z×{0})

∼=
��

p(Z×I,Z×{0})
// (X, p(e))(Z×I,Z×{0})

∼=
��

(E, e)(CZ,v0)
F // (X, p(e))(CZ,v0)

Since In+1 ∼= CIn, we obtain the following corollary where 0 ∈ In denotes
the origin.

Corollary 3.10. If p : E → X has the continuous path-covering prop-
erty, then for every e ∈ E and n ∈ N, the induced map p(In,0) : (E, e)(In,0) →
(X, p(e))(I

n,0) is a homeomorphism.

Remark 3.11. Note that Corollary 3.10 implies that maps with the con-
tinuous path-covering property have the homotopy lifting property with re-
spect to I and thus the conclusions of Lemma 2.4 apply to all such maps.

The following lemma generalizes [35, 2.4.5] and is essentially [5, Lemma
2.5]. We give a direct statement and proof that avoids groupoid terminology.

Lemma 3.12. If p : E → X has the continuous path-covering property,
p(e0) = x0, and (Z, z0) is a based space such that ev1 : P (Z, z0) → Z is
quotient, then a map f : (Z, z0) → (X,x0) has a unique continuous lift
f̃ : (Z, z0)→ (E, e0) if and only if f#(π1(Z, z0)) ≤ p#(π1(E, e0)).

Proof. By Corollary 3.10, p uniquely lifts paths and path-homotopies.
Hence, the condition f#(π1(Z, z0)) ≤ p#(π1(E, e0)) is equivalent to the well-
definedness of the lift function f̃ with the following standard definition: for
z ∈ Z, let γ ∈ P (Z, z0) be a path ending at z, f̃ ◦ γ ∈ P (E, e0) be the
unique lift of f ◦ γ, and set f̃(z) = f̃ ◦ γ(1). Since ev1 : P (Z, z0) → Z is
quotient, Z is path-connected. This makes the uniqueness of f̃ clear once
we verify continuity. Let P (p)−1 : P (X,x0) → P (E, e0) be the continuous
lifting homeomorphism, and consider the following diagram for which the
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commutativity is equivalent to the definition of f̃ :

P (Z, z0)

ev1
��

P (f)
// P (X,x0)

P (p)−1

∼=
// P (E, e0)

ev1
��

Z
f̃

// E

Since the top composition P (Z, z0) → E is continuous and ev1 : P (Z, z0)

→ Z is assumed to be quotient, f̃ is continuous by the universal property of
quotient maps.

Corollary 3.13. If p1 : (E1, e1)→ (X,x0) and p2 : (E2, e2)→ (X,x0)
are maps with the continuous path-covering property such that

(1) ev1 : P (E1, e1)→ E1 and ev1 : P (E2, e2)→ E2 are quotient,
(2) (p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2)),

then there exists a unique homeomorphism h : (E1, e1)→ (E2, e2) such that
p2 ◦ h = p1.

Theorem 3.14. Suppose p : E → X has the continuous path-covering
property, e ∈ E, and (Z, z) is a path-connected space. Consider the map
F : (E, e)(Z,z) → (X, p(e))(Z,z) given by F (f) = p ◦ f .

(1) If Z is contractible, then F is bijective.
(2) If Z is contractible and compact Hausdorff, then F is a homeomorphism.

Proof. Since Z is contractible, there is a section s : Z → P (Z, z) to
the evaluation map ev1 : P (Z, z) → Z. Thus, the latter is a quotient map.
The injectivity of F follows from the fact that Z is path-connected and
p has the unique path-lifting property. Since Z is simply connected and
ev1 : P (Z, z) → Z is quotient, Lemma 3.12 applies to give the surjectivity
of F .

Note that Lemma 3.9 proves (2) in the case where Z is a cone. For
general contractible Z, there is a retraction r : CZ → Z such that r(v0) = z.
This means that for every space (A, a), the induced map R : (A, a)(Z,z) →
(A, a)(CZ,v0), R(g) = g◦r, is a section and therefore a topological embedding.
Consider the naturality diagram

(E, e)(Z,z)
F //

R
��

(X, p(e))(Z,z)

R
��

(E, e)(CZ,v0)
p(CZ,v0)

// (X, p(e))(CZ,v0)

where the vertical maps are embeddings and the bottom map is a homeomor-
phism (recall Lemma 3.9). It follows that F is a topological embedding.
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Theorem 3.15. If p : E → X has the continuous path-covering property,
then so does the map P (p) : P (E)→ P (X) induced on free path spaces.

Proof. Let α ∈ P (E), e = α(0). By Corollary 3.10, the induced map F2 :

(E, e)(I
2,0) → (X, p(e))(I

2,0) is a homeomorphism. Let A = {h ∈ (E, e)(I
2,0) |

h(t, 0) = α(t)} and similarly B = {h ∈ (X, p(e))(I
2,0) | h(t, 0) = p ◦ α(t)}.

Note that F2 maps A into B. Since F2 is surjective, if h ∈ B, then there is
a lift h̃ ∈ (E, e)(I

2,0) such that h̃(t, 0) is a path satisfying h̃(0, 0) = e and
p ◦ h̃(t, 0) = p ◦ α(t). Since p has the unique path-lifting property, we have
h̃(t, 0) = α(t) and thus h̃ ∈ A. It follows that F2 maps A homeomorphically
onto B. Restricting the exponential law naturality diagram on the left gives
the commutativity of the diagram on the right:

P (P (E))
P (P (p))

//

∼=
��

P (P (X))

∼=
��

EI
2 pI

2

// XI2

P (P (E), α)
P (P (p))

//

∼=
��

P (P (X), p ◦ α)
∼=
��

A
(F2)|A

∼= // B

It follows that the map P (P (E), α)→ P (P (X), p ◦ α) of based path spaces
induced by p is a homeomorphism.

4. Comparison to fibrations and Dydak’s Problem. The following
lemma is proven by comparing Definition 3.1 with Lemma 2.3 and [35, 2.7.8]

Lemma 4.1. A Hurewicz fibration has totally path-disconnected fibers if
and only if it has the continuous path-covering property.

Proof of Theorem 1.1. (1)⇒(2) follows from Lemma 4.1.
For (2)⇒(3), suppose p : E → X has the continuous path-covering prop-

erty. By Proposition 3.3, it suffices to show that p has the homotopy lifting
property with respect to In for n ≥ 1. Note that p : E → X has the homo-
topy lifting property with respect to a locally compact Hausdorff space Z if
and only if for every map f : Z → E, the induced map P (pZ) : P (EZ , f)→
P (XZ , p◦f) is surjective. By inductively applying Theorem 3.15 with the ex-
ponential homeomorphism (W In)I ∼=W In+1 , we see that for every n ≥ 1 and
map f : In → E, the map P (pI

n
) : P (EI

n
, f) → P (XIn , p ◦ f) is a homeo-

morphism. Therefore, p has the homotopy lifting property with respect to
all cubes In, n ≥ 0, and is a Serre fibration.

(3)⇒(4) follows from Lemma 2.3.

Since every covering projection is a Hurewicz fibration with discrete fibers
[35, Theorem 2.2.3], we have the following.

Corollary 4.2. Every covering projection has the continuous path-cover-
ing property.
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The previous corollary allows us to answer the question: when do we
know that a map with the continuous path-covering property is, in fact,
a genuine covering projection? Our answer provides a generalization of the
classical result [35, Theorem 2.5.10].

Corollary 4.3. Suppose X is locally path-connected and semilocally
simply connected and p : E → X is a map with the continuous path-covering
property. If ev1 : P (E, e0) → E is quotient (for instance, if E is locally
path-connected), then p is a covering projection.

Proof. The hypotheses on X imply that there exists a covering projec-
tion q : E′ → X and e′0 ∈ E′ such that q#(π1(E′, e′0)) = p#(π1(E, e0)).
By Corollary 4.2, q has the continuous path-covering property. Since ev1 :
P (E, e0) → E is quotient, Corollary 3.13 applies to give a homeomorphism
f : E → E′ such that q ◦ f = p. It follows that p is a covering projection.

Example 4.4. By considering two one-dimensional planar sets, we con-
struct a counterexample to the converse of (1)⇒(2) in Theorem 1.1. Define

A = {(x,−
√
x− x2) ∈ R2 | x ∈ [0, 1]} ∪

⋃
n∈N
{(t, t/n) ∈ R2 | 0 ≤ t ≤ 2}.

Let X1 = A ∪
{(
x, 1−x2

)
| 1 ≤ x ≤ 2

}
and X2 = A ∪ [1, 2] × {0}. Define

p : X1 → X2 to be the identity onA and p
(
x, 1−x2

)
= (x, 0), 1 ≤ x ≤ 2, on the

additional line segment (see Figure 1). Notice that p is a continuous bijection
with the continuous path-covering property. However, f is not a fibration
since it does not have the homotopy lifting property with respect to the
convergent sequence space S = {0} ∪ {1/n | n ∈ N}. In particular, we have
f : S → X1 given by f(0) = (1, 0) and f(1/n) = (1, 1/n). If g : S × I → X2

is defined by g(0, t) = (0, t + 1) and g(1/n, t) =
(
t+ 1, t+1

n

)
, then we have

p ◦ f(s) = g(s, 0); however, there is no continuous lift g̃ : S × I → X1 such
that p ◦ g̃ = g.

Fig. 1. The map p : X1 → X2 has the continuous path-covering property but is not a
Hurewicz fibration.

Example 4.5 ([24]). Consider the Infinite Earring Space

E =
⋃
n∈N

{
(x, y) ∈ R2

∣∣∣∣ (x− 1

n

)2

+ y2 =
1

n2

}
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where ℓn : S1 → E denotes the standard counterclockwise loop around the
nth circle based at b0 = (0, 0). Although E does not admit a simply connected
covering space (since it is not semilocally simply connected), it does admit
a simply connected space Ẽ which is a generalized universal covering space
in the sense of [24]. The generalized covering map p : Ẽ→ E is characterized
by its lifting property: given x̃ ∈ Ẽ and a map f : (Y, y)→ (E, p(x̃)) from a
path-connected, locally path-connected space Y , there exists a unique lift f̃ :
(Y, y)→ (Ẽ, x̃) (satisfying p◦f̃ = f) if and only if f#(π1(Y, y)) = 1. It follows
directly from this lifting criterion that p is a Serre fibration with unique path
lifting. Moreover, as observed in [24, Example 4.15], distinct fibers of p may
not be homeomorphic. Hence, p is not a Hurewicz fibration. We observe that,
in fact, p does not have the continuous path-covering property, and therefore
provides a counterexample to the converse of (2)⇒(3) in Theorem 1.1.

As noted in [24], Ẽ = P (E, b0)/∼ may be constructed as the set of path-
homotopy classes [α] of paths α ∈ P (E, b0). A basic open neighborhood
of [α] is of the form B([α], U) = {[α · δ] | δ(I) ⊆ U} where U is an open
neighborhood of α(1). The map p : Ẽ → E is the endpoint projection,
p([α]) = α(1). In particular, if we take the class [cb0 ] of the constant path as
our basepoint in Ẽ, then the unique lift α̃ : (I, 0)→ (Ẽ, [cb0 ]) ends at [α].

Notice that the sequence αn = ℓn · ℓ1 converges to ℓ1 in P (E, b0). If p
had the continuous path-covering property, then the sequence of lifts α̃n :
(I, 0) → (Ẽ, b0) would converge to the lift ℓ̃1. In particular, the sequence of
endpoints α̃n(1) = [αn] would converge to ℓ̃1(1) = [ℓ1] in Ẽ. However, if U
is any neighborhood of b0 not containing the first circle of E, then the basic
open neighborhood B([ℓ1], U) of [ℓ1] only contains homotopy classes of paths
that begin with [ℓ1]. Hence [αn] /∈ B([ℓ1], U) for any n ∈ N, a contradiction.
We conclude that p does not have the continuous path-covering property.

Let D2 denote the closed unit disk with basepoint d0 = (1, 0).

Problem 4.6 (Dydak’s Unique Lifting Problem [16, Problem 2.3]). If E
is a connected, locally path-connected space and p : E → D2 is a map with
the path-covering property, must p be a homeomorphism?

Dydak’s Unique Lifting Problem is curiously difficult. We identify an
interesting connection between this problem and Theorem 1.1. To do so, we
recall a functorial construction that “locally path-connectifies” spaces. Given
a space X, the locally path-connected coreflection of X is the space lpc(X)
with the same underlying set as X but whose topology is generated by the
basis consisting of all path components of the open sets in X. This new
topology on X is generally finer than the original topology, i.e. the identity
function id : lpc(X)→ X is continuous. Moreover, lpc(X) is characterized by
its universal property: if f : Y → X is a map from a locally path-connected
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space Y , then f : Y → lpc(X) is continuous with respect to the topology of
lpc(X). An immediate consequence of this fact is the equalityXY = lpc(X)Y

of mapping sets if Y is locally path-connected. In particular, X and lpc(X)
share the same set of paths and path-homotopies. Hence, id : lpc(X)→ X is
a bijective weak homotopy equivalence, which sometimes is even a Hurewicz
fibration [35, Example 2.4.8].

Definition 4.7. We say a map p : E → X has the disk-covering property
if for every e ∈ E, the induced function F : (E, e)(D

2,d0) → (X, p(e))(D
2,d0)

is bijective.

Lemma 4.8. For any map p : E → X, the following are equivalent:

(1) p has the disk-covering property,
(2) p has the path-covering property and the homotopy lifting property with

respect to I,
(3) p : E → X is a Serre fibration with totally path-disconnected fibers,
(4) p has totally path-disconnected fibers and the homotopy lifting property

with respect to all first countable, locally path-connected, simply connected
spaces.

Proof. The directions (4)⇒(3)⇒(2)⇒(1) are clear. Additionally, (1)⇒(2)
follows directly from the fact that (I2, I × {0}) has the homotopy extension
property and I2/I×{0} ∼= D2. To prove (2)⇒(4), suppose p : E → X has the
path-covering property and the homotopy lifting property with respect to I.
The fibers of p are totally path-disconnected by Proposition 3.3. Note that
Lemma 2.4 applies to p. Let Z be a first countable, locally path-connected,
and simply connected space, and f : Z → E and g : Z × I → X be
maps such that p ◦ f(z) = g(z, 0) for all z ∈ Z. Fix z0 ∈ Z. Set e0 =
f(z0) and x0 = p(e0). Since p has unique lifting of all paths and path-
homotopies and since Z × I is simply connected, there is a unique function
g̃ : (Z × I, (z0, 0)) → (E, e0) such that p ◦ g̃ = g and defined so that if
(z, t) ∈ Z×I and γ is a path from (z0, 0) to (z, t), then g̃(z, t) is the endpoint
of the lift g̃ ◦ γ ∈ P (E, e0). It suffices to check that g̃ is continuous. Consider
a convergent sequence {(zm, tm)} → (z, t) in Z × I. Since Z × I is first
countable and locally path-connected, there is a path γ ∈ P (Z × I, (z0, 0))
such that γ(1/2) = (z, t) and if sm = 1

2 + 1
m+1 , then γ(sm) = (zm, tm).

Consider the lift g̃ ◦ f : (I, 0) → (E, e0). Applying the uniqueness of path
lifting and the well-definedness of g̃, we see that g̃ ◦ γ(1/2) = g̃(z, t) and
g̃ ◦ γ(sm) = g̃(zm, tm) for all m ∈ N. The continuity of g̃ ◦ γ applied to
{tm} → 1/2 gives g̃(zm, tm)→ g̃(z, t). Thus g̃ is continuous.

Theorem 4.9. Dydak’s Unique Lifting Problem has a positive answer if
and only if properties (3) and (4) in Theorem 1.1 are equivalent for all maps.
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Proof. First, suppose (3) and (4) in Theorem 1.1 are equivalent for all
maps. If E is a path-connected, locally path-connected space and p : E →
D2 is a map with the path-covering property, then, by assumption, p is a
Serre fibration. Recall that d0 = (1, 0) ∈ D2 and let e0 ∈ p−1(d0). Let
α : (I, 0)→ (D2, d0), α(t) = (cos(πt),− sin(πt)) be the arc on the boundary
of the lower semicircle and f : (I2,0) → (D2, d0) be a homeomorphism
such that f(t, 0) = α(t). Since p is a Serre fibration, there exists a map
f̃ : (I2,0)→ (E, e0) satisfying p◦f̃ = f . Clearly, we have p◦(f̃ ◦f−1) = idD2 :

E

p

��

I2

f̃
>>

f

∼= // D2

Let e ∈ E and find a path β̃ : I → E from e0 to e. Let β = p ◦ β̃. Now
f̃ ◦ f−1 ◦ β : (I, 0)→ (E, e0) is a path satisfying p ◦ f̃ ◦ f−1 ◦ β = β and thus
f̃ ◦ f−1 ◦ β = β̃. In particular, f̃ ◦ f−1 ◦ p(e) = f̃ ◦ f−1 ◦ β(1) = β̃(1) = e.
Thus f̃ ◦ f−1 ◦ p = idE , proving that p is a homeomorphism with inverse
f̃ ◦ f−1.

Next, we suppose Dydak’s Unique Lifting Problem has a positive answer
and that p : E → X is a map with the path-covering property. By Lemma 4.8,
it suffices to show that p has the disk-covering property. Let e ∈ E and
consider the induced map F : (E, e)(D

2,d0) → (X, p(e))(D
2,d0) given by

F (g) = p ◦ g. Since p has unique path lifting, it is clear that F is injective.
Let f : (D2, d0)→ (X, p(e0)) be a map. Let D2×XE = {(b, e) | f(b) = p(e)}
be the pullback of f and p topologized as a subspace of D2 × E. We take
Y to be the locally path-connected coreflection of the path component of
D2 ×X E containing (d0, e0). Let q : Y → D2 be the resulting projection.
Since p has the disk-covering property, the universal property of the pull-
back and the locally path-connected coreflection make it clear that q has the
path-covering property. Hence, by assumption, q is a homeomorphism. It fol-
lows that if i : Y → D2 ×X E is the canonical continuous inclusion (though
it may not be an embedding) and r : D2 ×X E → E is the projection, then
f̃ = r ◦ i◦q−1 : (D2, d0)→ (E, e0) is a map such that p◦ f̃ = f . We conclude
that F is onto. Thus p has the disk-covering property.

Y
i //

q
��

D2 ×X E
r //

��

E

p

��

D2

q−1

OO

D2

f̃
::

f
// X

If Dydak’s Problem has an affirmative answer, the following corollary
becomes a striking consequence; the conclusion implies that, within stan-
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dard scenarios, only the unique lifting of paths is required to guarantee the
strongest kind of structure, namely, that of a genuine covering projection.
For instance, it would imply that any map p : E → X of connected manifolds
with the path-covering property must be a covering projection.

Corollary 4.10. Suppose Dydak’s Unique Path-Lifting Problem has an
affirmative answer. If p : E → X has the path-covering property where X
is first countable, locally path-connected, semilocally simply connected, and
ev1 : P (E, e0)→ E is quotient, then p is a covering projection.

Proof. A map p as in the hypotheses is a Serre fibration with totally
path-disconnected fibers by Theorem 4.9. Let H = p#(π1(E, e0)). Given the
conditions onX, there exists a covering projection q : (E′, e′0)→ (X,x0) such
that q#(π1(E′, e′0)) = H. Since q has the continuous path-covering property,
by Lemma 3.12, there exists a unique continuous lift p̃ : (E, e0) → (E′, e′0)
such that q ◦ p̃ = p. Since p and q are Serre fibrations with the unique path-
lifting property satisfying q#(π1(E

′, e′0)) = p#(π1(E, e0)), p̃ is a bijection
with the path-covering property.

P (E, e0)

ev1
��

P (p̃)
// P (E′, e′0)

ev1
��

E
p̃

// E′

Since X is first countable, so is the covering space E′. Let {e′m} → e′ be a
convergent sequence in E′, let p̃(em) = e′m and p̃(e) = e′. Since E′ is first
countable and locally path-connected, there is a path α̃ ∈ P (E′, e′0) such
that α̃(1/2) = e′ and α̃(tm) = e′m where tm = 1

2 + 1
m+1 , m ∈ N. Since p̃

has the path-covering property, there is a unique path β̃ ∈ P (E, e0) such
that p̃ ◦ β̃ = α̃. Since β̃(tm) = em and β̃(1/2) = e, the continuity of β̃
gives {em} → e. This proves that the inverse of p̃ is continuous. Since p̃ is a
homeomorphism and q is a covering map, p is a covering map as well.

5. Inducing embeddings on topologized fundamental groups.
Recall from the introduction the basic properties of the quotient topology
on the homotopy groups. A key feature of this topology is that a convergent
net {αj}j∈J → α of based loops in Ω(X,x0) gives rise to a convergent net
of homotopy classes {[αj ]}j∈J → [α] in π1(X,x0).

Lemma 5.1. If {e} is closed in E and p : E → X has the continuous path-
covering property, then the induced map Ωn(p) : Ωn(E, e)→ Ωn(X, p(e)) is
a closed embedding for n = 1 and a homeomorphism for n ≥ 2.

Proof. For the case n = 1, note that since {e} is closed in E, ev−1
1 (e) =

Ω(E, e) is a closed subspace of P (E, e). By assumption, p induces a homeo-



18 J. Brazas and A. Mitra

morphism P (p) : P (E, e)→ P (X, p(e)) on path spaces, which restricts to an
embedding Ω(p) : Ω(E, e)→ Ω(X, p(e)). Recall that a path β ∈ Ω(X, p(e))

lies in the image of Ω(p) if and only if the lift β̃ ∈ P (E, e) ends at e, i.e. is a
loop. Therefore, it suffices to show that Ω(p) has closed image in Ω(X, p(e)).
Suppose, to obtain a contradiction, that Ω(p) does not have closed im-
age. Then there is a convergent net {βj}j∈J → β∞ in Ω(X, p(e)) where
βj ∈ Im(Ω(p)) for every j ∈ J and β∞ /∈ Im(Ω(p)). This net uniquely de-
fines a map g : (F (J), v0)→ (X, p(e)) where g(j, t) = βj(t) for j ∈ J ∪{∞}.
According to Remark 3.8, there is a unique map g̃ : (F (J), v0)→ (E, e) such
that p ◦ g̃ = g. Let β̃j be the path β̃j(t) = g̃(j, t) for j ∈ J ∪ {∞}. Then
{β̃j}j∈J → β̃∞ in P (E, e). But since βj lies in the image of Ω(p) for each
j ∈ J , we have β̃j ∈ Ω(E, e) for all j ∈ J . Additionally, since β∞ does not lie
in the image of Ω(p), β∞ does not lift to a loop, i.e. β̃∞ /∈ Ω(E, e). However,
this contradicts the fact that Ω(E, e) is closed in P (E, e).

For n≥2, Corollary 3.10 ensures that p(In,0) : (E, e)(In,0)→(X, p(e))(I
n,0)

is a homeomorphism. Hence the restriction Ωn(p) : Ωn(E, e)→ Ωn(X, p(e))
is an embedding. We check that Ωn(p) is onto. Let f : (In, ∂In)→ (X, p(e))

be a map and consider the unique lift f̃ : (In,0)→ (E, e). It suffices to check
that f̃(∂In) = e. Let x ∈ ∂In and γ : (I, 0) → (In,0) be the linear path
from 0 to x. Hence, we have a loop f ◦ γ : (I, {0, 1}) → (X, p(e2)), which
factors through the simply connected space Sn ∼= In/∂In. Since [f ◦γ] = 1 ∈
π1(X, p(e)), Lemma 2.4 guarantees that the unique lift f̃ ◦ γ ∈ P (E, e) is a
loop. Since (p◦f̃)◦γ = f ◦γ = p◦f̃ ◦ γ, unique path lifting gives f̃ ◦γ = f̃ ◦ γ.
Hence f̃(x) = f̃(γ(1)) = f̃ ◦ γ(1) = e. This proves f̃(∂In) = e.

Theorem 5.2. If {e} is closed in E and p : E → X has the continuous
path-covering property, then the induced homomorphism p# : πn(E, e) →
πn(X, p(e)) is a closed embedding for n = 1 and an isomorphism of qua-
sitopological groups for n ≥ 2.

Proof. For n = 1, p# is injective by Lemma 2.4 and continuous by the
functoriality of the quotient topology. Consider the following commutative
diagram where the vertical maps are the natural quotient maps identifying
homotopy classes:

Ω(E, e)

qE
��

P (p)
// Ω(X, p(e))

qX
��

π1(E, e)
p#
// π1(X, p(e))

Suppose that C ⊆ π1(E, e) is closed and non-empty. Then q−1
E (C) is closed

in Ω(E, e) and, since the top map is a closed embedding by Lemma 5.1,
P (p)(q−1

E (C)) is closed in Ω(X, p(e)). Since qX is a quotient map, it suffices
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to show that q−1
X (p#(C)) is closed. However, this is a consequence of the

equality P (p)(q−1
E (C)) = q−1

X (p#(C)), which may be verified using standard
unique lifting arguments.

For n ≥ 2, consider the following commuting diagram where the vertical
maps are the natural quotient maps:

Ωn(E, e)

qE
��

Ωn(p)
// Ωn(X, p(e))

qX
��

πn(E, e)
p#

// πn(X, p(e))

By Lemma 5.1, the top map is a homeomorphism. The universal property
of quotient maps ensures that p# is a topological quotient map. By The-
orem 1.1, p is a Serre fibration with totally path-disconnected fibers. The
injectivity of p# follows from the long exact sequence of homotopy groups
associated with p. Thus, p# is a group isomorphism and a homeomorphism.

Corollary 5.3. Suppose pi : Ei → X, i ∈ {1, 2}, are maps of T1
spaces with the continuous path-covering property and f : E1 → E2 is a weak
homotopy equivalence such that p2 ◦ f = p1. Then f is a weak topological
homotopy equivalence.

Proof. First, notice that f must be a bijection. By Lemma 3.5, f has the
continuous path-covering property and it follows from Theorem 5.2 that f
is a weak topological homotopy equivalence.

Theorem 5.4. Suppose p : (E, e0) → (X,x0) has the continuous path-
covering property and suppose H = p#(π1(E, e0)) where {x0} is closed in X.
Then there is a canonical continuous bijection ϕ : π1(X,x0)/H → p−1(x0)
defined by ϕ(H[α]) = α̃(1) where α̃ is the unique lift of α starting at e0.
Moreover, if ev1 : P (E, e0) → E is a quotient map, then ϕ is a homeomor-
phism.

Proof. The map ϕ is analogous to the correspondence used in classical
covering space theory and is well-defined in view of Lemma 2.4. To verify
the continuity of ϕ, we consider the following diagram where i is inclusion
and the vertical map q(α) = H[α] is quotient:

Ω(X,x0)

ψ

##

q

��

i // P (X,x0)

∼= P (p)−1

��

P (E, e0)

ev1

��

π1(X,x0)/H
ϕ

// E
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The composition ψ = ev1 ◦P (p)−1 ◦ i is continuous, and it maps a loop α
based at x to the endpoint α̃(1) of the lift starting at e0. Since E is assumed
to be path-connected, ψ maps Ω(X,x0) onto the fiber p−1(x0). Lemma 2.4
implies that ψ(α) = ψ(β) if and only if H[α] = H[β]. Since q is quotient, we
have a unique continuous bijection ϕ : π1(X,x0)/H → p−1(x0) defined by
ϕ(H[α]) = ψ(α).

If ev1 is quotient, then P (p)−1 ◦ ev1 is quotient. Since {x0} is closed,
p−1(x0) is closed in E. We have (P (p)−1 ◦ ev1)−1(p−1(x0)) = Ω(X,x0) and
thus the restriction ψ : Ω(X,x0)→ p−1(x0) of the quotient map P (p)−1◦ev1
is also quotient. Since ϕ ◦ q = ψ where q and ψ are quotient, ϕ must also be
quotient and thus a homeomorphism.

Remark 5.5. The converse of Theorem 5.4 is false. Indeed, if X = E is
any simply connected space for which ev1 is not quotient (e.g. X1 or X2 from
Example 4.4) and p = idX , then ϕ is a homeomorphism of 1-point spaces.

Corollary 5.6. If p : (E, e0) → (X,x0) has the continuous path-
covering property and H = p#(π1(E, e0)), then the coset space π1(X,x0)/H
is totally path-disconnected.

Proof. By Proposition 3.3, p−1(x0) is totally path-disconnected and the
proof of Theorem 5.4 implies that π1(X,x0)/H continuously injects into
p−1(x0).

6. Classifying maps with continuous path-covering property. To
make the statement of Theorem 1.2 precise, we define the following relations.

Definition 6.1. Consider two maps p1 : E1 → X and p2 : E2 → X with
the continuous path-covering property.

(1) We say p1 and p2 are equivalent if there exists a homeomorphism h :
E1 → E2 such that p2 ◦ h = p1, and we refer to h as an equivalence.

(2) A simple weak equivalence between p1 and p2 is a triple (p3, f1, f2) where
p3 : E3→X has the continuous path-covering property and fi : E3→ Ei,
i ∈ {1, 2}, are weak homotopy equivalences such that pi ◦ fi = p3. If a
simple weak equivalence exists between p1 and p2, we write p1 ∼s p2.

E1

p1

!!

E3
f1
oo

p3
��

f2
// E2

p2
}}

X

(3) We say p1 and p2 are weakly equivalent if there exists a finite chain of
simple weak equivalences p1 = q1 ∼s · · · ∼s qm = p2. If such a chain
exists, we say p1 and p2 are weakly equivalent.
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Remark 6.2. Note that if we have p2 ◦ f = p1 for maps pi : Ei → X
with the continuous path-covering property, then f has the continuous path-
covering property by Lemma 3.5 and f must be surjective. If, in addition, f
is π1-surjective, then standard lifting arguments show that f is a bijection.
If f induces an isomorphism on π1, then f must also be a weak topolog-
ical homotopy equivalence by Theorem 5.2 (if X is at least T1, then E is
T1 by Proposition 3.3). Hence, one may equivalently define “simple weak
equivalence” by replacing weak homotopy equivalences f1, f2 with either the
weaker notion of π1-surjective maps or the stronger notion of bijective, weak
topological homotopy equivalences.

Lemma 6.3. If p1 : E1 → X and p2 : E2 → X are weakly equiva-
lent maps with the continuous path-covering property, and e1 ∈ E1, then
(p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2)) for some e2 ∈ E2.

Proof. Fix e1 ∈ E1 and x0 = p1(e1). If there is a weak homotopy equiv-
alence f : E1 → E2 such that p2 ◦ f = p1, we set e2 = f(e1). Since f is
π1-surjective, the equality (p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2)) follows. If
there is a weak homotopy equivalence g : E2 → E1 such that p1◦g = p2, then
g is surjective by Remark 6.2. Hence, we may find e2 ∈ E2 with g(e2) = e1,
from which (p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2)) follows. Applying zig-zags
of simple weak equivalences now gives the lemma.

Notice that Lemma 6.3 implies that the weak equivalence classes of maps
with the continuous path-covering property over a given space X form a set.
To give a self-contained proof of Theorem 1.2, we require a sequence of
lemmas involving quotient space constructions.

Lemma 6.4. Suppose X is a path-connected Hausdorff space, x0 ∈ X, and
c(X) is the space with the same underlying set as X but with the quotient
topology inherited from ev1 : P (X,x0)→ X. Then

(1) the identity function f : c(X) → X has the continuous path-covering
property and is a weak topological homotopy equivalence,

(2) ev1 : P (c(X), x0)→ c(X) is quotient, i.e. c(c(X)) = c(X).

Proof. Let J be a directed set and g : (F (J), v0) → (X,x0) be a based
map on the directed arc-fan over J . Applying Remark 3.8, we show that
g : (F (J), v0) → (c(X), x0) is continuous. Since F (J) is contractible, ev1 :
P (F (J), v0) → F (J) is a retraction and is therefore a topological quotient
map. Consider the induced map P (g) in the diagram below:

P (F (J), v0)

ev1
��

P (g)
// P (X,x0)

ev1
��

F (J)
g

// c(X)



22 J. Brazas and A. Mitra

Since the top composition is continuous and the left vertical map is quo-
tient, the bottom map is continuous by the universal property of quotient
maps. Therefore, since all maps of directed arc-fans lift, f has the continuous
path-covering property. Having a finer topology than X, c(X) is Hausdorff.
Theorem 5.2 then shows that f induces a closed embedding on π1 and a
topological isomorphism on πn for n ≥ 2. Hence, it suffices to show f is π1-
surjective. Given a loop α ∈ Ω(X,x0), there is a unique lift α̃ ∈ P (c(X), x0)
such that f ◦ α̃ = α. However, since the underlying function of f is the iden-
tity, it must be that α̃ = α as a loop. Since Ω(f) : Ω(c(X), x0)→ Ω(X,x0)
is a bijection, it follows that f# : π1(c(X), x0) → π1(X,x0) is surjective.
This completes the proof of (1).

For (2), recall that we have shown f has the continuous path-covering
property. Hence, as the top map in the triangle below is a homeomorphism
and the right map is quotient by construction, the left evaluation map is the
composition of quotient maps and is therefore quotient:

P (c(X), x0)

ev1
&&

P (f)
// P (X,x0)

ev1
yy

c(X)

Example 6.5. Path-connected spaces (Z, z0) for which c(Z)→ Z is not
a homeomorphism exist, e.g. the spaces X1 and X2 in Example 4.4, and
Zeeman’s example [31, Example 6.6.14]. For any such space, the identity
function c(Z)→ Z and the identity map Z → Z are non-equivalent, weakly
equivalent maps with the continuous path-covering property that both cor-
respond to H = π1(Z, z0). Therefore, the main statement of Theorem 1.2
only holds using our notion of weak equivalence.

We use the construction of c(X) to prove the converse of Lemma 6.3.

Lemma 6.6. Let p1 : E1 → X and p2 : E2 → X be maps with the
continuous path-covering property. Then the following are equivalent:

(1) p1 and p2 are weakly equivalent,
(2) for every e1 ∈ E1, we have (p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2)) for

some e2 ∈ E2,
(3) for all e1 ∈ E1 and e2 ∈ E2 such that p1(e1) = x0 = p2(e2), the subgroups

(p1)#(π1(E1, e1)) and (p2)#(π1(E2, e2)) are conjugate in π1(X,x0).

Moreover, if ev1 : P (E1, e1) → E1 and ev1 : P (E2, e2) → E2 are quotient,
then “weak equivalence” may be replaced by “equivalence”.

Proof. (1)⇒(2) is Lemma 6.3 and (2)⇔(3) follows from standard covering
space theory arguments. To prove (2)⇒(1), suppose that
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(p1)#(π1(E1, e1)) = (p2)#(π1(E2, e2))

for some e1 ∈ E1 and e2 ∈ E2. Let c(E1) and c(E2) be the spaces constructed
as in Lemma 6.4 so that the continuous identity functions f1 : c(E1) → E1

and f2 : c(E2) → E2 have the continuous path-covering property and are
weak topological homotopy equivalences. For i ∈ {1, 2}, let qi : c(Ei) → X
be the map qi = pi ◦ fi. Since qi is the composition of maps with the con-
tinuous path-covering property, qi also has the continuous path-covering
property (recall Lemma 3.5). Moreover, since f1 and f2 are weak homo-
topy equivalences, we have (q1)#(π1(c(E1), e1)) = (q2)#(π1(c(E2), e2)). By
Lemma 6.4(2), ev1 : P (c(Ei), ei) → c(Ei) is quotient for i ∈ {1, 2}. There-
fore, Corollary 3.13 applies to give a homeomorphism h : (c(E1), e1) →
(c(E2), e2) such that q2 ◦ h = q1.

E1

p1
))

c(E1)
f1
oo

q1

""

h
∼=

// c(E2)
f2
//

q2

||

E2

p2
uu

X

For the final statement of the lemma, suppose ev1 : P (Ei, ei) → Ei is quo-
tient for i ∈ {1, 2}. Then f1 and f2 are true identity maps and thus homeo-
morphisms. It follows that p1 and p2 are equivalent.

The previous lemma settles the uniqueness claims in Theorem 1.2. We
now focus on existence. Fix a based space (X,x0), a subgroupH ≤ π1(X,x0),
and let X̃H = P (X,x0)/∼ be the quotient space where α ∼ β if and only
if α(1) = β(1) and [α · β−] ∈ H. Let H[α] denote the equivalence class of
α ∈ P (X,x0) and let qH : P (X,x0) → X̃H , qH(α) = H[α], be the quotient
map. We write x̃H to represent H[cx0 ], which we take to be the basepoint
of X̃H . Let pH : X̃H → X, pH(H[α]) = α(1) be the endpoint evaluation map.

Lemma 6.7. For any path-connected space (X,x0),

(1) ev1 : P (X̃H , x̃H)→ X̃H is a quotient map,
(2) P (pH) : P (X̃H , x̃H)→ P (X,x0) is a retraction.

Proof. Consider the following commutative diagram:

P (P (X,x0), cx0)

P (ev1)

((

ev1

��

P (qH)
// P (X̃H , x̃H)

ev1
��

P (pH)
// P (X,x0)

ev1

��

P (X,x0)

ev1

77

qH // X̃H
pH // X
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Since P (X,x0) is contractible in a canonical way, we may define a map
S : P (X,x0)→ P (P (X,x0), cx0) by setting S (α)(t)(s) = α(st).

• For the top map P (ev1), notice that P (ev1)(β) = ev1 ◦β ∈ P (X,x0) and
thus (P (ev1)(β))(t) = β(t)(1). Therefore,

P (ev1)(S (α))(t) = S (α)(t)(1) = α(t)

for all t ∈ I, giving P (ev1) ◦S = idP (X,x0).
• For the left vertical map ev1 : P (P (X,x0), cx0) → P (X,x0), we have

S (α)(1) = α and thus ev1 ◦S = idP (X,x0).

Hence, S is a section to both the top map P (ev1) and the left vertical
map ev1. In particular, both maps are quotient. In the left square, the
composition qH ◦ ev1 is quotient. It follows that the middle vertical map
ev1 : P (X̃H , x̃H)→ X̃H is quotient, proving (1). In the top triangle, we have
P (pH) ◦ (P (qH) ◦ S ) = P (ev1) ◦ S = idP (X,x0) and thus P (qH) ◦ S is a
section to P (pH), proving (2).

Remark 6.8. The section P (qH) ◦S in the proof of Lemma 6.7 guar-
antees that for a given H ≤ π1(X,x0), every path α ∈ P (X,x0) admits a
canonical lift P (qH) ◦ S (α) = α̃H : I → X̃H of α called the standard lift
and defined by α̃H(t) = H[αt] where αt(s) = α(st) is the linear reparame-
terization of α|[0,t] and α0 = cx0 .

Proposition 6.9. The endpoint projection pH : X̃H → X is a quotient
map if and only if ev1 : P (X,x0)→ X is quotient.

Proof. Since ev1 = pH ◦qH as maps P (X,x0)→ X where qH is quotient,
the conclusion follows from basic properties of quotient maps.

For a given path α ∈ P (X,x0), consider each of the following pullbacks
(with the respective subspace topology):

• Gα = {(x, t) ∈ X × I | α(t) = x}, the graph of α,
• Eα,H = {(H[β], t) ∈ X̃H × I | β(1) = α(t)},
• Pα = {(β, t) ∈ P (X,x0)× I | β(1) = α(t)}.
Recalling that αt(s) = α(st) for t ∈ I, define ϕα : Pα → Ω(X,x0) by
ϕα(β, t) = β · α−

t . Since t 7→ αt defines a path in P (X,x0) and the concate-
nation {(γ, δ) ∈ P (X,x0)

2 | γ(1) = δ(1)} → Ω(X,x0), (γ, δ) 7→ γ · δ−, is
continuous, ϕα is also continuous.

Lemma 6.10. If a path α ∈ P (X,x0) has closed graph Gα ⊆ X × I,
then the function ψα,H : Eα,H → π1(X,x0)/H, ψα,H(H[β], t) = H[β · α−

t ],
is continuous.

Proof. First, we observe that ψα,H is well-defined. Indeed, if (H[β], t) =
(H[γ], t), then [β ·α−

t ][αt ·γ−] = [β ·γ−] ∈ H and thus H[β ·α−
t ] = H[γ ·α−

t ].
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Let qH : P (X,x0) → X̃H and πH : Ω(X,x0) → π1(X,x0)/H denote the
canonical quotient maps. Since I is locally compact Hausdorff, the product
map qH × id : P (X,x0) × I → X̃H × I is a quotient map [36]. Since the
graph Gα is assumed to be closed, the set Eα,H = (pH × id)−1(Gα) is closed
in X̃H × I. We have Pα = (qH × id)−1(Eα,H). Therefore, the restriction
(qH × id)|Pα : Pα → Eα,H is a quotient map. Since ψα,H ◦ (qH × id)|Pα =
πH ◦ ϕα is continuous and (qH × id)|Pα is quotient, ψα,H is continuous.

P (X,x0)× I

qH×id
��

Pα?
_oo

(qH×id)|Pα

��

ϕα
// Ω(X,x0)

πH

��

X̃H × I

pH×id

��

Eα,H

��

? _oo
ψα,H

// π1(X,x0)/H

X × I Gα?
_oo

Theorem 6.11. If the graph Gα of every path α ∈ P (X,x0) is closed
in X × I (e.g. if X is Hausdorff ) and π1(X,x0)/H is totally path-discon-
nected, then pH : X̃H → X has the continuous path-covering property and
(pH)#(π1(X̃H , x̃H)) = H.

Proof. Suppose X satisfies the hypotheses of the theorem. Recall that
P (pH) : P (X̃H , x̃H) → P (X,x0) is a topological retraction by Lemma 6.7.
Therefore, it is enough to show that P (pH) is injective, i.e. pH : X̃H → X
has the unique path-lifting property. Fix a path α ∈ P (X,x0). It suffices to
show that the standard lift α̃H ∈ P (X̃H , x̃H) given by α̃H(t) = H[αt] is the
only lift of α starting at x̃H .

Suppose, to obtain a contradiction, that β̃ : I → X̃H is a lift of α start-
ing at x̃H such that β̃ ̸= α̃H . By restricting the domain if necessary, we may
assume that β̃(1) ̸= α̃H(1). Write β̃(t) = H[βt] for paths βt : (I, 0, 1) →
(X,x0, α(t)). From the definition of the standard lift, β̃(1) ̸= α̃H(1) implies
that [β1 ·α−] /∈ H. Since pH ◦ β̃(t) = βt(1) = α(t) for all t ∈ I, there is a well-
defined path β̃′ : I → Eα,H given by β̃′(t) = (β̃(t), t). By Lemma 6.10, ψα,H :

Eα,H → π1(X,x0)/H is continuous. Therefore, ψα,H ◦ β̃′ : I → π1(X,x0)/H

is a continuous path from ψα,H ◦ β̃′(0) = ψα,H(x̃H , 0) = H[cx0 · α−
0 ] = x̃H

to ψα,H ◦ β̃′(1) = ψα,H(H[β1], 1) = H[β1 · α−]. However, H[β1 · α−] ̸= x̃H ,
showing that ψα,H ◦ β̃′ is a non-constant path in π1(X,x0)/H, a contradic-
tion of the assumption that π1(X,x0)/H is totally path-disconnected. We
conclude that pH has the continuous path-covering property.

Finally, note that if α ∈ Ω(X,x0), then the standard lift α̃H is a loop ⇔
α̃H(1) = x̃H ⇔ H[α] = H[cx0 ] ⇔ [α] ∈ H. It follows from (2) of Lemma 2.4
that (pH)#(π1(X̃H , x̃H)) = H.
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Proof of Theorem 1.2. We note that the uniqueness (up to weak equiva-
lence) conditions in Theorem 1.2 are guaranteed by Lemma 6.6. If there ex-
ists a map p : (E, e)→ (X, p(e)) with the continuous path-covering property
such that H = p#(π1(E, e)), then π1(X,x0)/H is totally path-disconnected
by Corollary 5.6. Conversely, if π1(X,x0)/H is totally path-disconnected,
then pH : X̃H → X has the continuous path-covering property and satisfies
(pH)#(π1(X̃H , x̃H)) = H by Theorem 6.11. This proves the main statement
of Theorem 1.2.

Part (1) follows by combining the main statement with Corollary 3.13.
For part (2), recall that ev1 : P (X̃H , x̃H)→ X̃H is quotient by Lemma 6.7(1).
Since every weak equivalence class of maps E → X with the continuous
path-covering property is represented by a map of the form pH , part (2)
follows.

The existence portion of Theorem 1.2 indicates that maps p : E → X
with the continuous path-covering property where E is path-connected exist
very often. The next corollary is the case H = 1 of Theorem 1.2.

Corollary 6.12. If X is Hausdorff, then there exists a simply connected
space E and a map p : E → X with the continuous path-covering property if
and only if π1(X,x0) is totally path-disconnected.

Example 6.13. Consider the canonical homomorphism Ψ : π1(X,x0)→
π̌1(X,x0) to the first shape homotopy group (see [24, Section 3]). Observe
that π̌1(X,x0) is naturally an inverse limit of discrete groups, and with the in-
verse limit topology on π̌1(X,x0), the natural map Ψ is continuous [8, p. 79].
If Ψ is injective, then π1(X,x0) continuously injects into an inverse limit of
discrete spaces and is therefore totally path-disconnected. By Corollary 6.12,
X must admit a simply connected space E and map p : E → X with the
continuous path-covering property. Spaces for which Ψ is injective include,
but are not limited to, all one-dimensional spaces [13, 17], planar sets [23],
and certain trees of manifolds [22].

7. A remark on topological structure. As noted in the introduc-
tion, it is not possible to characterize fibrations with unique path lifting or
other maps defined abstractly in terms of unique lifting properties up to
homeomorphism using the (topologized) fundamental group. However, there
are many situations where one can choose a highly structured representative
map p : E → X from a given weak equivalence class.

In this section, we focus on the locally path-connected case. To simplify
our terminology, we say that a based map p : (E, e0) → (X,x0) with the
continuous path-covering property corresponds to a subgroup H ≤ π1(X,x0)
if p#(π1(E, e0)) = H. In what follows, we will implicitly use the fact from
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Theorem 1.2 that maps p1 : E1 → X and p2 : E2 → X with the continuous
path-covering property are weakly equivalent if and only if for every e1 ∈ E1

there exists e2 ∈ E2 such that p1(e1) = p2(e2) and (p1)#(π1(E1, e1)) =
(p2)#(π1(E2, e2)).

Inverse limits of path-connected spaces are not always path-connected.
Since we only wish to consider non-empty, path-connected domains, the next
definition will simplify the exposition to follow.

Definition 7.1. Fix a class C of maps with the continuous path-covering
property. Suppose J is a directed set, pj : Ej → X, j ∈ J , are maps in C ,
and fj,j′ : Ej → E′

j are maps satisfying pj′ ◦ fj,j′ = pj whenever j ≥ j′ in J
and which also satisfy fj′,j′′ ◦ fj,j′ = fj,j′′ whenever j ≥ j′ ≥ j′′. Suppose
E is a non-empty path component of the inverse limit lim←−j(Ej , fj,j′) and let
p : E → X be the restriction of lim←−j pj : lim←−j(Ej , fj,j′)→ X. We refer to the
map p as a restriction of an inverse limit of maps of type C . For example,
the term restriction of an inverse limit of covering projections will refer to
maps of the form p where each pj is a covering projection.

It is straightforward to see that the class of maps with the continuous
path-covering property is closed under inverse limits in the above sense.
Moreover, the following lemma requires a direct argument involving the uni-
versal property of inverse limits; see [7, proof of Lemma 2.31] for details.

Lemma 7.2. Suppose J is a directed set, pj : Ej → X is a map with
the continuous path-covering property for every j ∈ J , and fj,j′ : Ej → E′

j

are maps satisfying pj′ ◦ fj,j′ = pj whenever j ≥ j′ and fj′,j′′ ◦ fj,j′ = fj,j′′
whenever j ≥ j′ ≥ j′′. Let (ej)j∈J ∈ lim←−j(Ej , fj,j′), E be the path component
of (ej)j∈J , and p : E → X be the restriction of lim←−j pj : lim←−j Ej → X. Then
p has the continuous path-covering property and corresponds to the subgroup
p#(π1(E, (ej))) =

⋂
j∈J(pj)#(π1(Ej , ej)).

Theorem 7.3. If X is locally path-connected, then a subgroup H ≤
π1(X,x0) is the intersection of open normal subgroups if and only if there
exists a map p : (E, e0) → (X,x0) which is a restriction of an inverse limit
of regular covering projections and which corresponds to H.

Proof. We recall [25, Corollary 5.9], which states that a subgroup K ≤
π1(X,x0) contains an open normal subgroup if and only if there exists a
covering projection over X that corresponds to K. As a consequence, if
q : (E, e) → (X,x) is a covering projection, then q#(π1(E, e)) is open
in π1(X,x).

SupposeH=
⋂
j∈J Nj whereNj is an open normal subgroup of π1(X,x0).

We may assume {Nj | j ∈ J} is the set of all open normal subgroups in
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π1(X,x0) containing H so that J becomes a directed set: j ≥ j′ in J if
and only if Nj ≤ Nj′ . For each j ∈ J , find a regular covering projection
pj : (Ej , ej)→ (X,x0) corresponding to Nj . Since the spaces Ej are locally
path-connected, the usual lifting properties of covering projections give the
existence of unique maps fj,j′ : (Ej , ej)→ (Ej′ , ej′) such that pj′ ◦ fj,j′ = pj
whenever j ≥ j′. Uniqueness of lifts ensures that these maps also satisfy
fj′,j′′ ◦ fj,j′ = fj,j′′ whenever j ≥ j′ ≥ j′′. Together, these maps form an
inverse system, and taking the limit gives a map lim←−j pj : lim←−j Ej → X.
Let E be the path component of (ej)j∈J in lim←−j Ej . Consider the restriction
fj : E → Ej of the projection map, and the restriction p : (E, (ej))→ (X,x0)
of lim←−j pj . By Lemma 7.2, p has the continuous path-covering property and
p#(π1(E, (ej))) =

⋂
j∈J(pj)#(π1(Ej , ej)) =

⋂
j∈J Nj = H.

For the converse, suppose p : E → X is a restriction of an inverse limit
of regular covering projections pj : Ej → X where p : (E, e) → (X,x)
corresponds to H. Let fj : E → Ej be the projections. Set ej = fj(e) and
Nj = (pj)#(π1(Ej , ej)). Since pj is a regular covering projection, Nj is an
open normal subgroup of π1(X,x0) for all j ∈ J . It follows from Lemma 7.2
that H =

⋂
j∈J Nj .

Definition 7.4 ([5]). A semicovering map is a local homeomorphism
p : E → X with the continuous path-covering property.

We refrain from calling a semicovering a “projection” since a semicovering
need not be locally trivial. As observed in [34], one may define a semicov-
ering to be a local homeomorphism with the path-covering property (the
continuous path-covering property follows as a consequence). Every covering
projection over a space X is a semicovering. The converse rarely holds. It
even fails for the Infinite Earring used in Example 4.5; see [25]. We prove
the following theorem, which generalizes the classical theorem that every
covering projection is a Hurewicz fibration [35, Theorem 2.2.3]; the lack of
local triviality requires a line of argument different from Spanier’s proof.

Theorem 7.5. Every semicovering map is a Hurewicz fibration with dis-
crete fibers.

Proof. Let p : E → X be a semicovering map. Since p is a local homeo-
morphism, p has discrete fibers. It suffices to check that p has the homotopy
lifting property with respect to an arbitrary space Z. Let f : Z → E and
g : Z × I → X be maps such that p(f(z)) = g(z, 0). For each z ∈ Z, let
γz : I → X denote the path given by g(z, t) and let γ̃z : I → E be the unique
continuous lift such that γ̃z(0) = f(z). This gives a function g̃ : Z × I → E
defined by g̃(z, t) = γ̃z(t). Since p ◦ g̃ = g, it suffices to show that g̃ is con-
tinuous. We do this by showing that g̃ is continuous on each member of an
open cover of Z × I by sets of the form V × I.
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Fix z0 ∈ Z. Since the path γ̃z0 : I → E is continuous, we may find a
subdivision 0 = t0 < t1 < · · · < tm = 1 and open sets U1, . . . , Um such
that γ̃z0([tj−1, tj ]) ⊆ Uj and that p maps Uj homeomorphically onto the
open set p(Uj) of X. Find an open neighborhood A1 of z0 in Z such that
f(A1) ⊆ U1. Since γz0([t0, t1]) ⊆ p(U1), the compactness of [t0, t1] and the
continuity of g allow us to find a neighborhood B1 of z0 in Z such that
B1 ⊆ A1 and g(B1 × [t0, t1]) ⊆ p(U1). Since g̃(B1 × {t0}) = f(B1) ⊆ U1, we
have g̃|V ′

1×[t0,t1] = p|−1
Uj
◦ g|B1×[t0,t1], so we may conclude that g̃ is continuous

on B1 × [t0, t1]. Since g(z0, t1) = γz0(t1) ∈ p(U1 ∩ U2), we may find a neigh-
borhood A2 of z0 in Z such that A2 ⊆ B1 and g(A2 × {t1}) ⊆ p(U1 ∩ U2).
Since p maps U1 ∩ U2 homeomorphically onto the open set p(U1 ∩ U2) (but
not necessarily onto p(U1) ∩ p(U2)), our choice ensures that g̃ is continuous
on A2 × [t0, t1] and g̃(A2 × {t1}) ⊆ U1 ∩ U2.

Applying the same procedure, we may find neighborhoods z0 ∈ A3 ⊆
B2 ⊆ A2 such that g̃ is continuous on A3×[t1, t2] and g̃(A3×{t2}) ⊆ U2∩U3.
Proceeding inductively, we obtain finitely many nested neighborhoods z0 ∈
An ⊆ An−1 ⊆ · · · ⊆ A2 ⊆ A1 such that g̃ is continuous on Aj × [tj−2, tj−1]
and g̃(Aj ×{tj−1}) ⊆ Uj−1 ∩Uj (the second inclusion being required for the
induction). We terminate the induction with An+1 by taking Un+1 = Un.

Let V = An+1. By restricting g̃, we see that g̃ is continuous on V ×
[tj−1, tj ] for all j ∈ {1, . . . , n}. Hence, by the pasting lemma, g̃ is continuous
on the tube V × I. Since g̃ is continuous on an open neighborhood of every
point in Z × I, g̃ is continuous.

Since the class of Hurewicz fibrations with the unique path-lifting prop-
erty is closed under forming restrictions of inverse limits (in the sense of
Definition 7.1), we have the following corollary.

Corollary 7.6. If p : E → X is a restriction of an inverse limit of
semicovering maps, then p is a Hurewicz fibration.

Remark 7.7. If p : (E, e0)→ (X,x0) is an arbitrary semicovering, then
p#(π1(E, e0)) is an open subgroup of π1(X,x0) [5, proof of Theorem 5.5].
For a locally path-connected space X (and many non-locally-path-connected
spaces), the open subgroups of π1(X,x0) are classified by the semicovering
maps over X (see [5] again). By mimicking the proof of Theorem 7.3, one
may prove an analogous statement for inverse limits: H is the intersection of
open (not necessarily normal) subgroups if and only if there exists an inverse
limit p : (E, e0)→ (X,x0) of semicovering maps that corresponds to H.

Definition 7.8 ([4]). The τ -topology on π1(X,x0) is the finest topol-
ogy such that (1) π1(X,x0) is a topological group, and (2) the map q :
Ω(X,x0)→ π1(X,x0), q(α) = [α] is continuous. We write πτ1 (X,x0) for the
fundamental group equipped with the τ -topology.
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Note that the quotient topology of π1(X,x0) is generally finer than that
of πτ1 (X,x0) and we have π1(X,x0) = πτ1 (X,x0) if and only if π1(X,x0) is a
topological group. It is shown in [4, Corollary 3.9] that the groups π1(X,x0)
and πτ1 (X,x0) share the same open subgroups. Additionally, every topolog-
ical group G is isomorphic to πτ1 (X,x0) for some space X constructed in a
manner similar to a 2-dimensional CW-complex, that is, by attaching 2-cells
to a generalized wedge of circles [4, Example 4.16]. In particular, such spaces
X satisfy a property called wep-connectedness, which is introduced in [5], and
which lies between X being locally path-connected and ev1 : P (X,x0)→ X
being quotient [5, Prop. 6.2]. We will only need to use the following weaker
fact: every topological group G is isomorphic to πτ1 (X,x0) for a space X
where ev1 : P (X,x0)→ X is a quotient map.

Example 7.9. We give an extreme example to show that there are
maps with the continuous path-covering property that cannot be restric-
tions of inverse limits of covering projections. Find a space X such that
ev1 : P (X,x0)→ X is quotient and πτ1 (X,x0) is topologically isomorphic to
the additive group of rationals Q. Since the quotient topology of π1(X,x0) is
finer than the τ -topology, π1(X,x0) is totally path-disconnected. Moreover,
if H ≤ π1(X,x0) is closed, then π1(X,x0)/H is a countable T1 space and
therefore must be totally path-disconnected. Therefore, the closed subgroups
of Q are classified by maps E → X with the continuous path-covering prop-
erty up to weak equivalence (and up to equivalence if we restrict to total
spaces E with ev1 : P (E, e)→ E quotient). However, Q has no proper open
subgroups. Since π1(X,x0) and πτ1 (X,x0) share the same open subgroups,
π1(X,x0) has no proper open subgroups. Therefore, X admits many maps
E → X with the continuous path-covering property, but Remark 7.7 en-
sures that the identity map X → X is the only one which is equivalent to a
(semi)covering or an inverse limit of (semi)coverings.

We consider restrictions of inverse limits of (semi)coverings to be “highly
structured” among those maps with the continuous path-covering property.
To prove Theorem 1.3, we apply some famous structure theorems from topo-
logical group theory.

Proof of Theorem 1.3. We only consider the non-trivial case where X
is not simply connected. Since p has the continuous path-covering property,
π1(X,x0)/H is a totally path-disconnected, T1 quasitopological group (re-
call the proofs of Proposition 3.3 and Corollary 5.6). If π1(X,x0)/H is com-
pact or, more generally, locally compact, then the quasitopological group
π1(X,x0)/H is a topological group by a theorem of R. Ellis [18]. Hence,
in both statements (1) and (2) to be proven, π1(X,x0)/H is a non-trivial,
locally compact, totally path-disconnected, Hausdorff topological group. It
is a result of Gleason [28] that every locally compact group that is not to-
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tally disconnected must contain an arc. Hence, π1(X,x0)/H must also be
totally disconnected.

(1) It is well-known that every totally disconnected compact group is a
pro-finite group [32, Theorem 1.34]. Therefore, if π1(X,x0)/H is compact, it
is pro-finite, and the identity element of π1(X,x0)/H has a basis {Nj | j∈J}
of finite-index open normal subgroups (whose intersection is the trivial sub-
group). If q : π1(X,x0) → π1(X,x0)/H is the natural quotient map, then
it follows that H is equal to the intersection

⋂
j∈J q

−1(Nj) of open sub-
groups q−1(Nj), which are finite-index and normal in π1(X,x0). Since X is
locally path-connected, by [25, Corollary 5.9], there exist finite-sheeted reg-
ular covering maps pj : Ej → X corresponding to the subgroups q−1(Nj)
respectively. Applying Theorem 7.3, we see that p is weakly equivalent to the
restriction of an inverse limit of finite-sheeted regular covering projections
as defined in Definition 7.1.

(2) If E is simply connected, or equivalently if H = 1, and π1(X,x0) =
π1(X,x0)/H is locally compact, then by van Dantzig’s Theorem [15], there
exists a compact open subgroup K ≤ π1(X,x0). Since X is locally path-
connected, the classification of semicoverings [5] applies and there exists a
semicovering q : (E′, e′0) → (X,x0) such that K = q#(π1(E

′, e′0)). Note
that E′ is locally path-connected since q is a local homeomorphism. By
statement (2) of Theorem 1.2, we may assume that ev1 : P (E, e0) → E is
quotient without changing the weak equivalence class of p. Since E is simply
connected, Lemma 3.12 gives a unique map r : (E, e0)→ (E′, e′0) such that
q◦r = p. Since p and q have the continuous path-covering property, it follows
from Lemma 3.5 that r also has the continuous path-covering property. By
the proof of Theorem 5.2, q# maps π1(E′, e′0) homeomorphically onto K. In
particular, π1(E′, e′0) is compact. By part (1), r is weakly equivalent to the
restriction of an inverse limit of covering projections rj : (Ej , ej)→ (E′, e′0),
j ∈ J , over E′. The composition of two semicoverings is a semicovering
[5, Cor. 3.5] (but need not be a covering projection), and thus q◦rj : Ej → X
is a semicovering for all j ∈ J . Since

⋂
j∈J(rj)#(π1(Ej , ej)) = 1 and q# is

injective, we have⋂
j∈J

(q ◦ rj)#(π1(Ej , ej)) = q#

(⋂
j∈J

(rj)#(π1(Ej , ej))
)
= 1.

Applying Lemma 7.2 and Theorem 1.2, we deduce that p is weakly equivalent
to the restriction of an inverse limit of the semicovering maps q ◦ rj .

8. Diagrammatic summary. We conclude with a diagram that sum-
marizes the relationships between lifting properties studied in this paper and
the topology of G = π1(X,x0). In the diagram, X is assumed to be locally
path-connected, p : (E, e0)→ (X,x0) is a map and H = p#(π1(E, e0)). The
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left side of the diagram involves properties of p and the right side of the
diagram involves properties of H. We give the following key for reading the
diagram:

• A ≤cl B: A is a closed subgroup of B,
• A ≤op B: A is an open subgroup of B,
• A ⊴op B: A is an open normal subgroup of B,
• t.p.d.: totally path-disconnected,
• CoreG(H) =

⋂
g∈G gHg

−1: the core of H in G, i.e. the largest normal
subgroup of G that is a subgroup of H.

A horizontal biconditional arrow means that there exists a map weakly equiv-
alent to p that satisfies the property on the left if and only if H satisfies the
property on the right. For example, p is weakly equivalent to a covering
projection if and only if the core of H in G is open, which is equivalent to
the shorter statement CoreG(H) ⊴op H. Notably, all horizontal arrows are
biconditional except for the last one.

All horizontal or downward arrows hold without extra hypotheses. The
two partial converse arrows that point upward (from Theorem 1.3) are la-
beled with the extra required hypotheses (indicated with a “+”) and appear
on opposite sides of the diagram to minimize clutter in the image.

covering
projection

ks [25, Cor. 5.9] +3

[5, Prop. 3.7]

��

� 

CoreG(H) ⊴op H

��

�"

semicovering
map

ks [5, Cor. 7.20] +3

��

H ≤op G

��
inv. limit of

semicoverings

qy

Rmk. 7.7

%-

Cor. 7.6

��

inv. limit of
covering

projections

ks

u}

fn

Thm. 7.3

08
H =

⋂
H≤K≤opG

K

��

H =
⋂

H≤N⊴opG

Nks

Hur. fibration
+ t.p.d. fibers

Lem. 4.1

��
continuous

path-covering
property

+ G/H a compact grp.
Thm. 1.3(1)

>F

ks Thm. 1.2 +3

Thm. 1.1

��

G/H t.p.d.

+ H = 1
+ G loc. compact

Thm. 1.3(2)

KS

��
Serre fibration
+ t.p.d. fibers

H ≤cl G
[8, Thm. 11]ks
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