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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Slamming dynamics of diving and its implications 
for diving-related injuries
Anupam Pandey1, Jisoo Yuk1, Brian Chang2, Frank E. Fish3, Sunghwan Jung1*

In nature, many animals dive into water at high speeds, e.g., humans dive from cliffs, birds plunge, and aquatic 
animals porpoise and breach. Diving provides opportunities for animals to find prey and escape from preda-
tors and is a source of great excitement for humans. However, diving from high platforms can cause severe 
injuries to a diver. In this study, we demonstrate how similarity in the morphology of diving fronts unifies the 
slamming force across diving animals and humans. By measuring a time-averaged impulse that increases linearly 
with the impact height, we are able to estimate the unsteady hydrodynamic forces that an average human body 
experiences during the slamming phase of a feet-first, hand-first, or head-first dive. We evaluate whether the 
unsteady forces put the diver at risk of muscle or bone injuries for a particular diving height. Therefore, this 
study sheds light on a hydrodynamics-based protocol for safe high diving and an evolutionary driver for 
animal morphology.

INTRODUCTION
The apparently mundane phenomenon of a solid object impacting 
the surface of water at high speeds is at the heart of many fascinating 
observations that range from the curious case of a stone skipping 
across the surface of a pond (1, 2), the aesthetically pleasing, splash-
less “rip” entry of Olympic divers (3, 4), to the remarkable sight of 
hundreds of gannets plunging into the sea (5, 6). The interest of the 
scientific community in the problem of water entry was initially 
fueled by its potential application in the design of warheads 
during the Second World War (7, 8). These studies were based 
on von Karman’s investigation in 1929 regarding seaplane landing 
boats (9). At a much smaller length scale, analogous hydrodynamics 
explain how a lizard walks on water; the basilisk lizard creates a cavity 
with each step, pushes on the side of the cavity wall to move forward, 
and pulls out its foot before the cavity collapses (10). A similar phys-
ical insight can also be applied to sports performance research, such 
as the water entry of divers (11) and improving the design of oars in 
rowing (12).

As an object pierces the air-water interface and moves through 
the liquid bulk, it exhibits rich phenomenological events: splashing, 
cavitation, pinch-off, and rippling, which are spread across multiple 
length and time scales (13). These hydrodynamic events emerge 
from the competition of inertia, surface tension, gravity, and viscos-
ity. While unsteady, inertial fluid forces are dominant during the 
slamming stage when the impacting body penetrates the water 
surface. Hydrostatic and viscous forces slow down the dynamics at 
later times. Measurement of the dynamic impact force shows a 
rapid increase in magnitude immediately after impact, leading to 
large values of impulse that can cause severe injuries. Plunge-diving 
birds such as gannets and boobies use the dense layer of feathers 
behind their head to transmit the impact force to their long, flexible 
neck that bends in response (14). Humans, however, without any 
anatomical feature to cushion their body, are prone to diving-related 
injuries. Recreational diving is one of the main causes of head and 

spinal cord injuries in the United States (15–17). Conventional 
wisdom held by professional divers is to jump feet first for heights 
above 10 m (11). Amateur divers and participants of recreational 
sports such as “death diving,” on the contrary, often hit the water 
surface with the head first to mimic death-defying stunts and excite 
the spectators. These observations raise the following questions: 
How much force does the impacting front experience? How does 
that force vary across different diving postures? When does the 
force reach the critical limit of causing injury?

Here, we study the slamming dynamics of animal and human 
dives and show how the forces of slamming lead to diving-related 
injuries. The impulsive nature of these forces makes them harder to 
be absorbed by muscles and tissues, and consequently, a diver be-
comes prone to suffer from injuries. Since an injury at the slamming 
phase might impair the ability of the diver to perform necessary 
maneuvers to safely reach the surface, understanding the hydro-
dynamic forces of this phase is critical. We examine how the overall 
shape of diving fronts unifies the slamming forces in plunge-diving 
animals and humans diving in different postures. In this regard, we 
use three-dimensional (3D) printed models of a harbor porpoise 
(Phocoena phocoena) head, Northern gannet (Morus bassanus) beak, 
and basilisk lizard (Basiliscus basiliscus) foot as representative of 
curved, conical, and flat projectiles, respectively. For human dives, 
the analogous forms are head-first, hand-first, and feet-first config-
urations (cf. Fig. 1) where the diving front is curved, pointy, and 
flat, respectively. We find that the classical added mass forces of 
unsteady hydrodynamics are able to capture the measured forces on 
animal and human models, revealing the role of the morphology of 
a diving front on the early time dynamics. We incorporate the tem-
poral evolution of the measured force into a time-averaged impulse 
that quantifies an effective slamming force for a given front shape 
and size. This effective slamming force is found to scale linearly with 
the height of the dive. Thus, whenever the diving height is such that the 
slamming force exceeds the critical compressive strength of muscles, 
ligaments, or bones, injuries occur. Through our hydrodynamic 
analysis, we conclude that the human upper torso, including the cer-
vical spine and collarbone, is vulnerable to injuries at heights above 
8 and 12 m when diving head and hands first, respectively. However, 
when diving feet first, the critical height of injury is about 15 m.
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RESULTS
Experimental observations
3D printed animal and human models, connected to a force sensor, 
are dropped into a water tank under gravity. A slider, on which the 
force sensor is mounted, ensures a vertical, free fall impact of different 
models with impact velocity, ​V  ≃ ​ √ 

_
 2gh ​​ (see Materials and Methods 

for details). We record the dynamic force at a rate of 2000 Hz. A high-
speed camera synchronized with the force sensor helps us measure the 
impact speed as a structure moves through the water. Typical snap-
shots from experiments are shown in Fig. 1, which are arranged into 
three rows: The first row shows porpoise and human head-first im-
pacts, which belong to the curved category (cf. Fig. 1, A, i to iii, and D). 
The second row shows gannet and human hand-first impacts, which 
belong to the conical/pointy category (cf. Fig. 1, B, i to iii, and E). The 
third row shows lizard and human feet-first impacts, which fall into 
the flat category (cf. Fig. 1, C, i to iii, and F). Here, we would like to 
point out that trained divers opt for thumb-in-palm or flat-hand grab 
postures while diving hand first to reduce splash and better protect the 
wrists and arms from injury (18, 19). Cliff divers, during feet-first 
entry, adopt either flexed, horizontal feet as shown in Fig. 1F or angled 
(downward) feet with flexed toes. Our choice of human configurations 
was motivated by the similarity in overall shape with diving animals.

In an ideal dive, where the diver enters the water smoothly without 
any harsh consequence, the kinetic energy of impact is slowly dissi-
pated by the flow. At early times, however, the force of impact on 
the body comes from the rate of change of added mass of water. 
Consequently, velocity remains constant at the impact value. This 
behavior is confirmed by the position versus time data of the hand-
first model shown in Fig. 2; a free fall trajectory (black dashed line) 
perfectly captures the measured positions under water (blue line). 
Both curved and pointy structures exhibit this constant velocity phase 
at early times. Feet-first models, on the contrary, create a large cavity 
upon impact and trigger splashing. Thus, the structure slows down 
immediately after slamming, as shown by the red line in Fig. 2. This 
qualitative difference between different diving postures is captured 
in the dynamic force measurements, which we discuss in detail in 
the following sections.

Unsteady slamming force
The impact dynamics of projectiles involve inertial, viscous, surface 
tension, and gravitational forces. Balancing the strength of the inertial 
force with the rest, we obtain three dimensionless numbers: Re, We, 
and Fr. Our experiments are performed in Re > 104, We > 103, 
and Fr ≃ 1 − 10 (see table S1 for details). Thus, the inertial and 

A

B

C

D

E

F

Fig. 1. Impact dynamics in animal and human diving. We categorize the diving form of humans and diving or walking animal bodies into curved (first row), conical 
(second row), and flat (third row). (A) (i) Snapshot of a dolphin just before water entry while performing acrobatics in an aquarium. The curvature of their snout is the key 
parameter dictating the impact force on the head. (ii and iii) Laboratory experiment of an impacting porpoise head. (B) (i) Water entry of a plunge-diving gannet [this 
panel has been adopted from (6)]. A small beak angle ensures a slow increase in the impact force. (ii and iii) Experimental snapshot of a 3D printed gannet skull piercing 
through the water surface. (C) (i) Water-walking basilisk lizard [image credit: Stephen Dalton; this panel has been adopted from (35)]. As the flatfoot slaps against the 
water, a large cavity forms immediately. (ii and iii) A model of the lizard foot. (D to F) Impact of 3D printed human models in head-first, hand-first, and feet-first forms, 
respectively. Insets are the AutoCAD rendering of the models. Scale bars, 10 cm. All of the images correspond to a drop height of 1 m.
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gravitational forces are of comparable strength. In the slamming 
regime, the velocity of a projectile remains constant, and thus, the 
slamming force (F) is dominated by an unsteady hydrodynamic force, 
F = V2dma/dz, where ma is the added mass carried by the body and 
V is the impact velocity (20, 21). Using von Karman’s simplified 
model (9), the added mass term, ma, can be written as the hemi-
spherical liquid volume of the radius equal to the cross-sectional 
radius of the body at the water surface. Hence, the impact force 
simplifies as

	​ F  =   ​V​​ 2​ ​r​​ 2​ ​ dr ─ dz ​​	 (1)

Here,  is the density of water. This equation demonstrates how 
the impact force depends on the body shape [r(z)], with z being the 
penetration depth. The constant of proportionality () depends on 
the nature of the flow field around the body (22), and thus, it is 
different for different shapes. In Eq. 1, we use the constant velocity 
assumption as z = Vt. In the rest of the paper, we will show how the 
force-time relation predicted from Eq. 1 captures the slamming 
dynamics of animal and human dives.

Force measurements for a curved (porpoise) and a conical (gannet) 
model are shown in Fig. 3. The time evolution of the impact force is 
very distinct for the two cases; the gannet head exhibits a smooth 
increase in force upon impact, while for porpoise head, a discontinuous 
transition leads to an immediate increase in force. The force increases 
in both cases until flow separation is triggered by irregularity in 
shape. Once the flow separates from the body, force-time behavior 
changes abruptly. We denote the phase between the touchdown and 
flow separation as the “slamming phase.” Stars on the data points of 
Fig. 3 mark the end of the slamming phase.
Diving porpoise
As mentioned before, the overall geometry of porpoise and gannet 
heads dictates the force response observed in Fig. 3. Leaving aside 
the geometric details of the two structures in section SI, here, we 
present the key features of the analytical prediction. We approxi-
mate the blunt snout of a porpoise as a paraboloid with its radius as 
r = (z/m)1/2, where the mean curvature of the snout at its tip, m, is 
estimated as ​​​ m​​  =  2 ​H​ s​​ / ​R​s​ 

2​​ with Hs and Rs being the height and base 
radius of the snout, respectively. Thus, Eq. 1 becomes

	​ F  =   ​V​​ 5/2​ ​​m​ −3/2​ ​t​​ 1/2​​	 (2)

where the prefactor, , has been found to be ​4 ​√ 
_

 2 ​​ (23). Equation 2 is 
plotted as the red dashed line in Fig. 3, which predicts the experi-
mental data until the snout is fully submerged in water, given by the 
slamming time ts = Hs/V. At this instant, the slamming force reaches 
the maximum value of ​​F​ m​​  =  4 ​√ 

_
 2 ​  ​V​​ 2​ ​H​s​ 

1/2​ ​​m​ −3/2​  =  2 ​V​​ 2​ ​R​s​ 
3​ / ​H​ s​​​. Be-

yond ts, an air cavity forms, and the flow separates from the body.
Diving gannet
The impact force on the pointy beak of a gannet is reasonably well 
captured by a conical shape of a half-angle  (measured from the 
vertical axis) (6). Replacing r = z tan  in Eq. 1, we get an analytical 
expression of the impact force as

	​ F  =   ​V​​ 4​ ​tan​​ 3​  ​t​​ 2​​	 (3)

where the numerical factor  =  (24). Thus, the smaller the cone 
angle, the slower the rate of increase in force. This quadratic rela-
tion between F and t, as shown by the blue dashed line in Fig. 3, 
explains the continuous transition of force as the body hits the water. 
The angle of the conical geometry is defined by tan  = Rb/Hb, with 
Hb and Rb being the height and base radius of the beak, respectively. 
Thus, the impact force at the slamming time ts = Hb/V reaches ​​
F​ m​​  =   ​V​​ 2​ ​R​b​ 3 ​ / ​H​ b​​​.
Diving hand first
Here, we show how the slamming dynamics of curved and conical 
bodies allow us to estimate impact forces in human diving with dif-
ferent postures. Amateur divers often dive with both arms extended 
above the head, bringing the palms together in a posture that we 
refer to as hand first. Diving in this hand-first orientation leads to a 
smooth water entry and prevents direct impact on the head. Drop-
ping the hand-first model from different heights, we notice that the 
force-time behavior bears a qualitative similarity with the slamming 
forces of the gannet beak (fig. S3A). For a comprehensive comparison 
between the two, here, we present the dimensionless data that in-
corporate different velocities and geometries. Introducing dimen-
sionless time ​​ 

_
 t ​  =  tV / H​ and force ​​ 

_
 F ​  =  F / ( ​tan​​ 3​  ​V​​ 2​ ​H​​ 2​)​, we get a 

universal force-time relation as in Eq. 3 of the form ​​ 
_

 F ​  = ​​ 
_
 t ​​​ 2​​. Since 

the hand-first posture is not axisymmetric, we use a mean radius r = 
z( tan 1 tan 2)1/2 to express the slamming force that is equivalent 
to Eq. 3. Here, 1 and 2 are the two wedge angles in the coronal and 
sagittal planes, respectively (fig. S1E). Thus, the dimensionless force for 
the hand-first dive takes a slightly different form, ​​ 

_
 F ​  =  F / ( ​tan​​ 3/2​ ​

​ 1​​ ​tan​​ 3/2​ ​​ 2​​  ​V​​ 2​ ​H​​ 2​)​. Figure 4A confirms that the above rescaling 
collapses the hand-first and gannet data onto one curve of ​​ 

_
 F ​  = ​​ 

_
 t ​​​ 2​​, 

marked by the black dashed line during the slamming phase (​​ 
_
 t ​  <  1​).

Diving head first
Head-first dives, where the skull is slammed against water, mostly 
occur during accidental falls and could lead to fatal brain injuries. 
The slamming force exhibits a nonmonotonic behavior, reaching a 
peak immediately after the impact. At very low penetration depths, 
the shape of the sphere is well approximated by a paraboloid, and 
one expects that the slamming force is captured by Eq. 2. This ap-
proximation breaks down even at moderate penetration depths of 
z ≥ 0.1R, where the slope of a spherical surface (dr/dz) rapidly falls 
to zero. The peak force is much smaller than what is predicted by 
Eq. 2 (see figs. S3B and S4). This discrepancy is due to the fact that the 
flat plate approximations of both von Karman and Wagner theories 
overestimate the pressure in the limit of small dr/dz (7, 8, 25). Once the 

Fig. 2. Kinematics of slamming. Position versus time plot for hand-first (blue line) 
and feet-first (red line) dives. Both models were dropped from a height of 1 m, reaching 
an impact velocity of 4.41 m/s. The theoretical free fall velocity (​​√ 

_
 2gh ​  =  4.43​ m/s) 

is plotted as the black dashed line. Both the position and time are measured from 
the water surface.
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“exact” spherical boundary is considered in the potential flow theory, 
to calculate the flow field and pressure, the slamming force becomes

	​ F  =  4 ​√ 
_

 2 ​ ​​m​ −3/2​ ​V​​ 5/2​ ​t​​ 1/2​ − 1.19 ​​m​ −1​ ​V​​ 3​ t​	 (4)

where m = 1/R (23). One immediately notices that the first term in 
Eq. 4 is exactly the same expression of Eq. 2. The second term of Eq. 4 
ensures a peak force of ​​F​ m​​  =  8 / (1.19)  ​V​​ 2​ ​​m​ −2​​ at t = 8/(1.19)2 1/
(mV) ≃ 0.572/(mV). Rescaling the time by 1/(mV) and force by 
Fm, we collapse the force-time curves for different velocities to a 
single master curve, given by ​​ 

_
 F ​  =  (1.19 / 8 ) (4 ​√ 

_
 2 ​ ​​ 
_
 t ​​​ 1/2​ − 1.19​ 

_
 t ​)​, as 

shown by the black dashed line in Fig. 4B. The porpoise force data 
have been rescaled by its maximum force, ​​F​ m​​  =  2 ​V​​ 2​ ​R​s​ 

3​ / ​H​ s​​​, as dis-
cussed previously. Both force and time scales are shown for a generic 
curved body with two independent length scales of H and m. How-
ever, these expressions simplify for the head-first data with one length 
scale of radius ​​R​(​​ = ​ ​m​ −1​ =  H​​).

Diving feet first
While the added mass increases continuously with submergence 
depth following the shape of conical and curved bodies, the impact 
of flat surfaces causes an instantaneous increase in the contact area 
between the solid and water, leading to a sharp spike in the force 
measurement. Thus, the slamming forces in this case cannot be 
understood by the analysis presented above. Experiments with 3D 
printed human and lizard foot (fig. S5) confirm the instantaneous 
peak force that scales with the impact velocity. To capture the peak 
slamming force, we use the generic inertial force scale of V2R2 to 
rescale the force data. Here, R is the radius of an equivalent circular 
flat plate (see section SI for details of calculating R), and  is one-half 
of the instantaneous drag coefficient, which is chosen to be 22 in 
accordance with recent measurements on flat panels (26). In addi-
tion, the force data exhibit high-frequency oscillations, the period 
of which remains unchanged for all the impact velocities. Naturally, 
these oscillations have a different origin from slamming itself. Flat 

Fig. 3. Evolution of the slamming force for harbor porpoise and gannet heads. Data points represent experimental measurements, whereas dashed lines are analyt-
ical predictions. The porpoise head (orange data) is dropped from a height of 60 cm, reaching an impact velocity of 3.42 m/s, while the gannet head data (blue points) 
correspond to a free fall height of 80 cm, reaching an impact speed of 3.95 m/s. The darker orange dashed line represents Eq. 2, whereas the darker blue dashed line 
represents Eq. 3. The star markers represent the end of the slamming phase marked by Hs/V and Hb/V, respectively. Force values shown in the figure have been averaged 
over five trials, and the error bars measure the SD in the measurement. The time stamps corresponding to the two sets of images are marked on the figure.

A B CA

Fig. 4. Dimensionless force versus time for the three different groups of models. (A) Gannet head and human hand-first impact follows the force-time relation of Eq. 3, 
which is captured by the dimensionless relation ​​ 

_
 F ​  = ​ t​​ −2​​, plotted as the black dashed line. The prefactor in the force scale is defined as g() = tan3 for the gannet head 

and g() = tan3/21tan3/22 for hand first. (B) Porpoise head and human head-first impact data are captured by Eq. 4, as represented by the dimensionless relation 
of ​​ 

_
 F ​  =  (1.19 / 8 ) (4 ​√ 

_
 2​ 

_
 t ​ ​ − 1.19​ 

_
 t ​)​ (black dashed line). The numeric factor  is ​4 ​√ 

_
 2 ​​ for the porpoise head and 8/(1.19) for the human head. (C) Human and lizard foot 

impact shows high-frequency oscillations in the force data. Time axis is scaled by the resonance frequency () of the bubble formed underneath the foot. The force values 
are scaled by the inertial force scale V2R2, where the numerical prefactor  = 11.
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(and concave) surfaces trap air bubbles in the process of piercing 
the water surface, and the oscillations of these bubbles have been 
found to give rise to the fluctuations in the force measurements (27). 
Assuming that the concave arch supporting human feet traps a bubble 
of radius w2 (width of the feet model as shown in fig. S1F), we estimate 
the resonance frequency as ​  = ​ w​2​ −1​ ​√ 

_
 3P /  ​ ≃  109​ rad/s, where P 

is atmospheric pressure, ( = 1.4) is the gas constant, and  is the 
water density (28). Figure 4C shows that a rescaling of time with  
perfectly captures the oscillation in force.

Time-averaged impulse
The rapid increase in the magnitude of force upon impact could be 
fatal for human body as muscles and soft tissues are unable to 
absorb the short-interval, impulsive forces. The temporal evolution 
and magnitude of these slamming forces depend on the shape and 
size of an impacting body. We characterize the dynamics of slamming 
by the impulse it creates and estimate an effective force of slamming 
that is given by the time-averaged impulse

	​ 〈 ​F​ S​​ 〉 =  ​ 
​∫0​ 

​t​ s​​
 ​​F dt
 ─ ​t​ s​​ ​​	  (5)

For both hand-first and head-first dives, we integrate the exper-
imental force up until ts = H/V to determine ⟨Fs⟩. However, for feet-first 

data, the slamming time (ts) is ill-defined. Thus, we estimate 〈Fs〉 in 
this case by integrating the slamming force until it reaches the first 
peak in magnitude (see Fig. 4C). The resulting forces for the three 
different human diving postures are plotted against the diving 
height in Fig. 5A. Here, two different marker sizes represent data for 
two different sizes of human models. To extrapolate the slamming 
force from our experimental range to what an average human body 
might experience while diving, we rescale ⟨Fs⟩ by fgL3 and the 
height h by L. This particular form of the characteristic force results 
from the integration of analytical prediction of F(t) and noting that 
ts = H/V and ​V  = ​ √ 

_
 2gh ​​ (see section SIV for details). The shape fac-

tor  for the three diving postures are listed in Table 1, whereas the 
length scale L is chosen to be either the head radius (1/m), mean 
shoulder width (wm), or equivalent feet radius (R). Once rescaled, 
the data of Fig. 5A are collapsed onto one master curve given as

	​ 〈 ​​ 
_

 F ​​ S​​ 〉  = ​   〈 ​F​ S​​ 〉 ─ 
 ​gL​​ 3​

 ​  = ​  h ─ L ​​	 (6)

as shown in Fig. 5B. According to Eq. 6, the diving height (h) gives 
direct access to the effective force of slamming on the human body. 
Comparing this slamming force to the critical impact force responsible 
for injury, one can estimate critical diving heights at which injuries 
might occur.

Knee injury

Collarbone fracture

Spine injury

A B

Fig. 5. Variation of the time-averaged impulse with diving height. (A) Time-averaged impulse for hand-first (orange triangles), head-first (blue circles), and feet-first 
(green squares) impacts for different diving heights. Marker sizes represent data for two separate sizes of each model. (B) Rescaling the effective slamming force and 
impact height leads to the collapse of the data onto the master curve given by ​〈 ​​ 

_
 F ​​ s​​ 〉  =  h / L​, which is represented by the solid dashed line. Critical force values from Table 1 

are plotted as the horizontal lines. The open circles represent critical heights for head-first (8 m), hand-first (12 m), and feet-first (15 m) dives causing injury. These dimen-
sional heights correspond to an average body size (L) listed in Table 1.

Table 1. Injury associated to diving. Critical forces are nondimensionalized using the shape factor () and average adult body size (L). Values of  and L are 
discussed in section SIV. The lower limits of critical force values listed in the last column are plotted in Fig. 5B. 

Diving posture Injury Critical force (Fc) Typical size (L) Shape factor () ​​​
_

 F​​ c​​  = ​   ​F​ c​​ _ 
g ​L​​ 3​

​​

Head first Cervical spine and  
neck (36)

2.4–5.9 kN (37, 38) Head radius  
(9.02 cm) (29) ​​​(​​ ​16 ​√ 

_
 2 ​ _ 3  ​ − 1.19​)​​​​

88–217

Skull fracture 4.2–6.2 kN (39, 40) 154–228

Hand first Clavicular compression 2.06–3.43 kN (41) (for a 
70-kg person)

Shoulder half-width 
(18.14 cm) (42)

0.54 65–109

Feet first Knee 8.24 kN (43) Equivalent radius 
[7.04 cm based on (44)]

11 218
Tibia fracture 7.9–16 kN (45) 209–482
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DISCUSSION
In summary, we have rationalized the slamming force for human and 
animal dives by considering the unsteady hydrodynamic forces that 
depend on the diving-front shape of an impacting body. For diving 
animals, either a curved snout, a conical beak, or a flatfoot leads to a 
distinct force-time response as a consequence of the different added 
masses of the body. The same analysis captures the slamming force of 
hand-first, head-first, and feet-first dives of humans. By introducing a 
time-averaged impulse that is representative of the slamming dynamics, 
we are able to unify the measured forces across different shapes and sizes.

Making use of the dimensionless time-averaged impulse versus 
the diving height plot of Fig. 5B, we elucidate the question of what 
is a safe height for human diving in a particular body position. Since 
the hydrodynamic forces primarily exert compressive impact forces 
on the body, we use the critical compressive force available in the 
literature corresponding to human muscle and bone injuries. Table 1 
presents a list of possible injuries, critical forces causing those injuries, 
and dimensionless values of the critical forces that are based on our 
analysis of slamming forces for the three different postures. Although 
different body parts are susceptible to injury during diving, we make 
the assumption that the head, neck, and cervical spine are the most 
vulnerable during head-first impacts, while bones and muscles in 
the limbs are prone to damage during hand-first and feet-first dives. 
As shown in Fig. 5B, these critical forces help us identify the maximum 
height above which diving leads to injury. For example, the lower 
limit of cervical spine injury corresponds to ​​​ 

_
 F ​​ c​​  =  88​, which inter-

sects the ​⟨​​ 
_

 F ​​ s​​⟩​ line at h/L = 88. Using the average human head radius 
(L) of 9.02 cm (29), we conclude that a height (h) ≃ 8 m is the critical 
height for causing spinal cord and neck injury with the head-first 
posture. Similarly, we find that hand-first dives from heights above 
12 m may lead to collarbone injury, and feet-first dives from heights 
above 15 m are prone to cause injuries to the knee. Since humans 
can actively modulate their muscle recruitment and ligament tension, 
the above critical height predictions that are based on passive cadaver 
properties only provide conservative estimates. With increased 
strength and proper training, competitive cliff divers can safely dive 
from heights of 18 to 26 m. Estimates given here provide a safety 
guideline for amateur divers and diving enthusiasts.

While humans are prone to injury in diving from moderately high 
platforms, plunge-diving animals prevent injuries from repeated high 
dives through morphological adaptations and behavioral modifica-
tions. Northern gannets and brown boobies, for example, forage on 
fish by diving into water at speeds of 24 m/s (30). Both these species 
have comparatively shallow beak angle () relative to surface-diving 
birds (31), leading to much smaller slamming forces as ​F  ∼ ​ tan​​ 3​ ​. 
Furthermore, gannets dive with their necks held straight (32), placing 
the vertebrae in a columnar arrangement that reduces stresses on 
the ligaments and muscles of the neck (6). Dolphins (Delphinidae), 
which frequently porpoise, have developed an interesting morpho-
logical feature. The cervical vertebrae in these cetaceans are shortened 
and fused (33). This fused vertebra increases the stiffness of the overall 
structure supporting the bulbous head, making it resilient against 
the impact forces during porpoising (34).

MATERIALS AND METHODS
3D modeling and 3D printing of objects
3D models are constructed in a stereolithography (STL) format based 
on computed tomography scan images using 3D Slicer software. 

Each STL file is modified to include a connector to a load cell through 
Fusion 360 software (Autodesk). For the human models, STL files are 
downloaded from clara.io (https://clara.io/view/d49ee603-8e6c-4720-
bd20-9e3d7b13978a) and are modified to various diving postures using 
Blender software. For 3D printing, all models are sliced using Cura 
software (Ultimaker Ltd.) with 40 to 50% infill and 0.2-mm layer height. 
Sliced files are printed in Ultimaker S5 (Ultimaker Ltd.) with with 
Ultimaker thermoplastic polyester (2.85 mm NFC PLA) filaments.

Experimental setup for diving experiments
Experiments are performed in a tank of 85 cm by 85 cm by 1 m. A 
slider is installed on a frame and is placed at the center of the tank. 
The slider is held in place with a latch connected to the frame. An 
LC101-25 (Omega Co.) load cell, capable of data collection at 2000 Hz, 
is mounted on the slider and is connected to the 3D printed models 
through a stainless steel rod 50 cm in length. Once the latch on the 
slider is released, the fixture combining the 3D model and the load 
cell free-falls to the water surface. The impact heights are varied be-
tween 20 and 100 cm to vary the impact speed. Signal from the load 
cell is amplified using a signal conditioner (2310B, Vishay) and 
collected through the Data Acquisition Card (USB-6001, NI). The 
voltage signals are converted to the force with a calibration curve. In 
front of the tank, we place a high-speed camera (Fastcam SAZ, Photron) 
with a 105-mm lens (Nikon) to capture the impact moment of the 
drops. The water tank is back-lit using light-emitting diode strips. 
All images are taken at 4000 frames per second. The high-speed 
camera and the load cell are synchronized with a trigger.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo5888

View/request a protocol for this paper from Bio-protocol.
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