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A cembranoid from tobacco prevents the expression of nicotine-
induced withdrawal behavior in planarian worms

Oné R. Pagan®”, Amanda L. Rowlands®, Angela L. Fattore, Tamara Coudron?, Kimberly R.
Urban@, Apurva H. Bidja®, and Vesna A. EteroviéP

a Department of Biology, West Chester University, 750 S. Church Street, West Chester, PA
19383-2112, United States

b Department of Biochemistry, Universidad Central del Caribe, Bayamén, Puerto Rico

Abstract

Using an adaptation of published behavioral protocols, we determined that acute exposure to the
cholinergic compounds nicotine and carbamylcholine decreased planarian motility in a
concentration-dependent manner. A tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-
triene-4,6-diol (4R-cembranoid), also decreased planarian motility. Experiments in the presence of
1 uM 4R-cembranoid did increase the 1Cgq for nicotine- but not carbamylcholine-induced decrease
in planarian motility. When planarians were exposed for 24 h to either nicotine or carbamylcholine
at concentrations near their respective I1Csg values and then transferred to plain media, nicotine-
exposed, but not carbamylcholine- or cembranoid-exposed worms displayed withdrawal-like distress
behaviors. In experiments where planarians were pre-exposed to 100 uM nicotine for 24 h in the
presence of 1 uM 4R-cembranoid, the withdrawal-like effects were significantly reduced. These
results indicate that the 4R-cembranoid might have valuable applications for tobacco abuse research.
This experimental approach using planarians is useful for the initial screening of compounds relevant
to drug abuse and dependence.
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1. Introduction

During the course of evolution, many types of organisms have developed substances used for
predation or defense. These substances include small organic toxins (Brenner et al., 2003;
Mebs, 2001). This is an aspect of the so-called “evolutionary arms race” (Dawkins and Krebs,
1979), where these toxins are structurally optimized for their interaction with molecular targets,
usually macromolecules such as receptors, transporters, and enzymes. These macromolecules,
conversely, can evolve into toxin-resistant forms (Geffeney et al., 2002, 2005; Hanifin et al.,
2008). One of the best-known examples of defensive molecules is nicotine (Soloway, 1976).
Nicotine, found primarily in tobacco plants, plays an important role in the resistance of these
plants against arthropods (Steppuhn et al., 2004). Nicotine’s main molecular targets are
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nicotinic acetylcholine receptors (nAChR), which are the best-known members of the ligand-
gated ion channel superfamily (Dani and Bertrand, 2007).

The cembranoids are cyclic diterpenoids which display a 14-carbon cembrane ring (Hann et
al., 1998; Wahlberg and Eklund, 1992; Fig. 1). Marine invertebrates are the richest cembranoid
source, with more than one hundred described examples (Wahlberg and Eklund, 1992).

Cembranoids are present in a variety of organisms, including conifers and tobacco (Dauben et
al., 1965; Wahlberg and Eklund, 1992), ants and termites (Edwards and Chambers, 1984;
Prestwich, 1984) and alligators (Mattern et al., 1997).

Few biological effects of the cembranoids have been reported. Some cembranoids act as
antitumor compounds (Rodriguez and Martinez, 1993); others inhibit cyclic AMP
phosphodiesterase (Roengsumran et al., 2002), and prostaglandin synthesis (Olsson et al.,
1993). Many cembranoids are ligands of muscle-type and neuronal-type nicotinic acetylcholine
receptors (Eaton et al., 2004; Eterovic¢ et al., 1993, Ferchmin et al., 2001; Hann et al., 1998;
Pagén et al., 2001). A specific cembranoid, eupalmerin acetate, potentiates the function of
another type of ligand-gated ion channel, the GABA-A receptor (Li et al., 2008).

Planarian worms (Platyhelmintes, Turbellaria, Tricladida; Ruppert et al. (2004)) are used
widely in developmental biology and regeneration research (Newmark and Sanchez-Alvarado,
2002). This group of organisms shows promise in neuropharmacology research, as they have
a well-developed nervous system that displays a rudimentary bilateral brain containing every
neurotransmitter system found in vertebrates (Cebria et al., 2002; Okamoto et al., 2005; Sarnat
and Netsky, 1985, 2002; Villar and Schaeffer, 1993). In contrast to most invertebrates, the
planarian nervous system shares many structural similarities with vertebrate nervous systems,
including multipolar neurons and dendritic spines (Sarnat and Netsky, 1985, 2002). Planarians
are being rediscovered as a very useful animal model to study abused drugs. These worms
display specific responses to psychoactive substances, including behaviors resembling
withdrawal syndromes in response to compounds such as cocaine, cannabinoids,
amphetamines and opiates (Buttarelli et al., 2002; Kusayama and Watanabe, 2000; Pagan et
al., 2008; Palladini et al., 1996; Raffa and Desai, 2005; Raffa and Martley, 2005; Raffa et al.,
2006; Raffa and Valdez, 2001; Rawls et al., 2006; Rowlands and Pagan, 2008). In this work,
we report the effect of a tobacco cembranoid on nicotine- or carbamylcholine-induced behavior
in planarians.

2. Materials and methods

2.1. Materials

2.2. General

Planarian worms (Dugesia dorotocephala) were obtained through Ward’s (Rochester, NY).
General laboratory materials were purchased from Fisher Scientific (Suwanee, GA). The
compounds used in this work are shown in Fig. 1. Nicotine ditartrate was purchased from
Sigma-Aldrich (St. Louis, MO) and carbamylcholine hydrochloride was purchased from Tocris
(Ellisville, MO). The tobacco cembranoid (4R-cembranoid) was purchased from Dr. Khalid
A. El Sayed (University of Louisiana at Monroe).

methods

All the experiments were done at room temperature using artificial pond water (APW; NaCl,
6 mM; NaHCOg3, 0.1 mM; CaCl,, 0.6 mM; pH 6.9), containing 0.1% dimethylsulfoxide

(DMSO0) as a solubility-aiding agent. At this concentration, DMSO does not show any evident
behavioral or toxic effects in planaria (Pagan et al., 2006). Planarians were transferred to APW
upon receipt and allowed to acclimate to the laboratory conditions for at least 24 h before the
experiments. The worms were used within 2 weeks of arrival, and the APW was changed daily.

Eur J Pharmacol. Author manuscript; available in PMC 2010 August 1.
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All graphs and statistical procedures were done using the GraphPad 5/Instat software packages
(GraphPad Software, San Diego, CA). Each of the described experiments was performed by
two or more independent observers.

2.3. Motility measurements

To measure planarian motility, we used a modification of a published behavioral protocol
(Raffa et al., 2001), as modified in Pagan et al. (2006, 2008). This is a simple, yet useful assay
that can be used to study the effects of experimental compounds on planarian locomotor
behavior. A worm was transferred to a previously APW-rinsed 6 cm polystyrene dish and set
on a grid (1 cm? squares, Fig. 2A), followed by adding 5 ml of APW/0.1% DMSO in the
absence (control) or in the presence of the experimental compounds. Unless otherwise
indicated, motility measurements were recorded after an incubation period of 15 min; it has
been reported that nicotine-induced behaviors in planarians display a latency of 10-15 min
(Buttarelli et al., 2000). Planarian motility was measured by counting how many times the
worm crossed a square per min, over a period of 8 min. Each worm was used only once. The
data was graphed as cumulative crosses vs. time, and fit to a linear equation (Fig. 2B). In
experiments where the worms were exposed to increasing concentrations of the experimental
compounds, the slopes obtained by the linear equation fit were normalized to the control slopes,
plotted as the fraction of control vs. the experimental compound concentration and fit to an
empirical Hill-type equation (Eq. (1)):

F=IC%,/(IC%,+[ compound]") ()

where F is the fraction of control, [compound] is the experimental compound concentration in
uM, ICsq is the compound concentration that decreased planarian motility by 50% and n is the
Hill coefficient.

The commercially available nicotine and carbamylcholine used in this study were in the form
of ditartrate and hydrochloride salts respectively. To determine if these ions affected planarian
motility on their own, they were tested at the concentrations that corresponded to the ICgq of
nicotine or CCh in the absence and in the presence of 0.1% DMSO.

2.4. Withdrawal-like behavior measurements

The procedure used to observe and measure withdrawal-like behaviors was adapted from Raffa
and Desai (2005) as modified in Rowlands and Pagan (2008). Briefly, planarians were placed
into separate 1.5 ml microcentrifuge tubes containing nicotine (100 uM) or carbamylcholine
(CCh, 150 uM). Two sets of control worms were also observed, using either planarians pre-
exposed to plain APWor to APW/0.1% DMSO. After an overnight incubation period (22-27
h), the worms were individually transferred to glass dishes containing APW in the absence of
any experimental compounds and observed with a stereomicroscope during three time periods:
0-5, 30-35 and 60-65 min. The withdrawal-like behaviors observed were based on the work
described in Raffa and Desai (2005). These behaviors were named “HeadBop” (“nodding”-
like movements while gliding at the bottom of the dish), “HeadSwing” (head rotation in the
absence of gliding while the tail is fixed to the bottom of the dish), “TailTwist™ (bending of
the tail tip) and “Corkscrew” (spiral rotation while floating/swimming). Two other described
movements: “Squirming” (shaking) and “Clinging” (scrunching), tended to appear
concurrently, therefore, we decided to count these movements together. The data was graphed
as the number of events as a function of time.

Eur J Pharmacol. Author manuscript; available in PMC 2010 August 1.
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3.1. Effects of the tested compounds on planarian motility

Fig. 2B shows the cembranoid-induced motility decrease in planarians. Similar plots were
obtained for nicotine and CCh (data not shown). Based on this data, concentration-response
curves for motility decrease induced by the cembranoid, nicotine and CCh were constructed
as described in the “Materials and methods” section (Fig. 3).

To determine the effect of tartaric acid and hydrochloric acid on planarian motility, they were
tested at the concentrations that corresponded to the 1Csq of nicotine or CCh. Since tartaric
acid is associated with nicotine in a 2:1 ratio and CCh is associated with HCl at a 1:1 ratio,
tartaric acid and HCI were tested at a concentration of 200 and 100 uM respectively, in the
absence and in the presence of 0.1% DMSO. None of these compounds affected planarian
motility at the tested concentrations (data not shown).

3.2. The presence of tobacco cembranoid significantly decreased the motility inhibition of
nicotine, but not carbamylcholine

Fig. 4 shows the effect of 1 uM cembranoid on the concentration—response motility curves of
nicotine or carbamylcholine, as indicated. The tobacco cembranoid induced a significant
increase in the nicotine, but not the CCh 1Csg.

3.3. Nicotine, but not carbamylcholine nor the 4R-cembranoid induces withdrawal-like

behaviors

For the first four behaviors (“HeadBop”, “HeadSwing”, “TailTwist” and “Corkscrew”), data
were fit to a linear equation and the statistical difference between the slopes obtained for the
controls and experimental groups was calculated using the F-test (Fig. 5). Neither the APW
controls nor the APW/0.1% DMSO controls displayed any stereotypic behaviors upon transfer
to APW. Nicotine-exposed, but not carbamylcholine-exposed, showed these withdrawal-like
behaviors. For nicotine, the number of observed instances of these behaviors decreased in a
linear fashion down to baseline levels over time (Fig. 5). When the planarians were incubated
with 1 uM 4R-cembranoid and then transferred to APW, the worms did not display these
withdrawal-like behaviors (data not shown).

A specific behavior, “scrunching/squirming”, did not follow a linear pattern (Fig. 6). In the
first measured time period (0-5 min), both nicotine- and CCh-exposed worms displayed this
behavior, with an average number of events close to two (Fig. 6). After this time period, the
carbamylcholine-exposed worms returned to baseline levels. At the second measured time (30—
35 min) nicotine induced a significantly higher number of events when compared to CCh.
Finally, at the last measured time (60-65 min), the worms exposed to both compounds were
at baseline level.

3.4. The 4R-cembranoid tobacco cembranoid prevents the nicotine-induced, withdrawal-like

behaviors

Fig. 7 shows a series of experiments to test the effect of 1 uM 4R-cembranoid on nicotine-
induced withdrawal behaviors. The presence of the cembranoid significantly decreased the
induction of these behaviors by nicotine. As in the previous set of experiments, the “scrunching/
squirming” behavior induced by nicotine displayed a non-linear nature, being relatively low
at 5 min, highest at 30 min and back to baseline at 60 min (Fig. 8). In this case, the cembranoid
also abolished these responses.

Eur J Pharmacol. Author manuscript; available in PMC 2010 August 1.
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4. Discussion

To our knowledge, this is the first report about the effect of cembranoids on planarian worms.
Previous studies using cholinergic agonists such as acetylcholine and nicotine have
demonstrated that these compounds induce behavioral responses in planarians (Best and
Morita, 1991, Buttarelli et al., 2000). Acetylcholine is a ubiquitous molecule in biological
systems; its presence in vertebrates is well established, but it is also present in microorganisms
and plants (Wessler et al., 1999). Acetylcholine receptors are traditionally classified as
nicotinic (ionotropic) or muscarinic (metabotropic), based on their specific activation by the
naturally-occurring products, nicotine and muscarine, respectively (Daly, 2005). A series of
studies have provided evidence for the presence of cholinergic receptors in planarians using
microarrays and expression sequence tags (Cebria et al., 2002; Mineta et al., 2003; Nakazawa
et al., 2003). Additionally, a planarian genome project, using the planarian Schmidtea
mediterranea, is underway (Robb et al., 2008). This database is posted at
http://smedgd.neuro.utah.edu/. Using this resource, we have found several candidates of
nicotinic and muscarinic cholinergic receptors.

Carbamycholine is a cholinesterase-resistant analog of acetylcholine (Kester et al., 2007). The
use of carbamylcholine allowed us to avoid using cholinesterase inhibitors, which can induce
behavioral changes in planarians by themselves (Buttarelli et al., 2000; Lenicque and Feral,
1976). Stimulation of the planarian cholinergic system by the cholinesterase inhibitor
physostigmine (eserine; Buttarelli etal., 2000; Lenicque and Feral, 1976) induced hypokinesia.
We have also found protein candidates consistent with cholinesterases using the
aforementioned S. mediterranea database (Robb et al., 2008).

In previous studies, the cholinergic agonist nicotine at a concentration of about 300 pM induced
hypokinesia, in agreement with our work (Buttarelli et al., 2000). Additionally, nicotine has
been used as an anesthetic agent for planaria (Pedersen, 1958). In contrast, known inhibitors
of nicotinic—cholinergic transmission such as gallamine, tubocurare and the depolarizing
neuromuscular blocking agent succinylcholine, failed to induce any apparent behavioral effects
in planarians (Best and Morita, 1991). Interestingly, the inhibition of muscarinic cholinergic
responses by mM doses of atropine caused hyperkinesia (Buttarelli et al., 2000). Taken
together, these results suggest that stimulation of the nicotinic—cholinergic system reduce
planarian motility, while the suppression of muscarinic cholinergic activity increases motility.
The hypokinesia induced by 20 uM 4R-cembranoid could be explained by cholinergic
activation, since under certain conditions 4R-cembranoid acts as a positive modulator of
nicotinic receptors (Ulrich et al., 2008).

Our observations that nicotine and CCh induce hypokinesia in planarians agree with the
literature reports discussed above. This is consistent with our results showing nicotine-induced
motility decrease. However, it is to be noted that the route of drug administration in rats and
planarians is rather different, namely the injection and transport through a circulatory system
in rats vs. the addition of the compounds to the water in planarians (which lack a circulatory
system). Planarian membranes are permeable to low molecular weight compounds (Palladini
et al., 1983), which should allow nicotine and cembranoids to reach their molecular targets
easily. Cembranoids can modulate a CNS-regulated behavior (motility) in rats, indicating that
these compounds can cross the blood—brain barrier (Ferchmin et al., 2001). This is supported
by experiments showing that rats injected intravenously with [3H]-4R-cembranoid, displayed
detectable radioactivity levels in their brains (Eterovi¢ et al., unpublished results). Further
studies using rodent models are needed.

Our results show that 1 uM 4R-cembranoid decreased the apparent potency of nicotine but not
carbamylcholine to induce motility decrease in our experimental system (Fig. 4). Our results

Eur J Pharmacol. Author manuscript; available in PMC 2010 August 1.
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also parallel a series of studies done using Xenopus oocytes expressing a specific NAChR
subtype from rats (Eaton et al., 2004), where the authors found that tobacco cembranoids inhibit
nicotine-, but not acetylcholine-induced currents. That said, it is important to point out that the
carbamylcholine curves display a much larger experimental error than the nicotine curves; the
non-significant p-value obtained may be an artifact of this data spread.

The most significant result in this work is that the 4R tobacco cembranoid prevents the
expression of nicotine-induced withdrawal-like behaviors in planarians (Figs. 7 and 8).

One of these nicotine-induced withdrawal-like behaviors, “Scrunching/Squirming”, did not
follow a linear decrease as a function of time (Figs. 6 and 8). Two possible explanations for
the transient increase in movements at t=30 min are, that upon transfer to nicotine-free APW
nicotine would diffuse out of the worm differentially, meaning that whatever nicotine
accumulated in nervous tissue would remain there longer than in other tissues, triggering the
peak responses after 30 min. Alternatively, this may be an effect induced by nicotine
metabolites, which are known to be bioactive by themselves in vertebrates (Crooks and
Dwoskin, 1997). More studies are clearly needed, since the pharmacokinetics and metabolism
of nicotine in planarians is currently unknown.

Our results are consistent with other studies showing that 4R-cembranoid blocks behavioral
sensitization to nicotine in rats (Ferchmin et al., 2001). Additionally, transient hypoactivity is
also observed in rats exposed for the first time to nicotine (Stolerman et al., 1995; Ferchmin
etal., 2001). Taken together, Eaton et al. (2004), Ferchmin et al. (2001) and our results provide
evidence for the evolutionary conservation cholinergic responses to specific ligands and other
drugs, and demonstrate the potential of cembranoids as compounds with possible applications
in tobacco abuse research.
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Fig. 1.

Compounds used in this work. 4R cembranoid (1S,2E 4R,6R,7E,11E-cembra-2,7,11-
triene-4,6-diol); (-) nicotine (3-(1-methylpyrrolidin-2-yl)pyridine) and carbamylcholine (2-
carbamoyloxyethyl-trimethylammonium).
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Fig. 2.

A. Motility assay experimental setup (square size=1 cm?, see text). B. Effect of 4R-cembranoid
in planarian motility. The data points were fit to a linear equation to generate the plots. Each
line represents the average of experiments done with 4-10 worms. Similar plots were obtained
for nicotine and carbamylcholine (data not shown). Error bars represent the standard error of
the mean.
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Fig. 3.

Dose-response curves showing the effect of the experimental compounds on planarian
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motility, based on linear plots like Fig. 2B. Each data point represents the average of 4-10
worms. The lines and the ICsq values (UM+SEM) were generated by fitting the data to Eq. (1).

Error bars represent the standard error of the mean.
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Fig. 4.

The presence of 1 uM 4R-cembranoid significantly increases the 1Csq of nicotine, but not of
carbamylcholine to induce motility decrease in planarians. A. Nicotine. B. Carbamylcholine.
The lines and the 1Csg s (WM+SEM) were generated using Eq. (1). The p-values were obtained
through an F-test. Each data point represents the average of 3-10 worms. Error bars represent
the standard error of the mean.

Eur J Pharmacol. Author manuscript; available in PMC 2010 August 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Pagan et al.

Page 14
6
10 -
Headbop Tailtwist

£ 8r p <0.001 8 p <0.0001
(5] g 4 -
3 L
- 6l <
- S
5 5
2 4t 2 5L
g ® £
= =]
Z ot z

of & , o— 5 ot

0 20 40 60 0
Mins Mins

10 0
o O Headswing . 8 C(lrlssg(r)%\iv
S p <0.01 £ p<0.
3 6r 3 6F
3 —
2 (=)
2 4r 8 4r
: :
Z 2F Z 2+

ot 1 1 1 or H@ﬂ

0 20 40 60 0 20 o =
Mins Mins
Fig. 5.

Nicotine (100 pM, closed symbols), but not carbamylcholine (150 uM, open symbols), induce
withdrawal-like behaviors in planarians, as indicated (see methods). Each symbol is the average
of three experiments. Error bars are the standard error of the mean. p-values (F-test) are
indicated in the figure.
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The “Scrunching/Squirming” behavior does not follow a linear pattern (see text). Nicotine (100
uM, closed symbols), carbamylcholine (150 pM, open symbols). The two data sets are
significantly different from each other (p<0.05; two-way ANOVA). Each symbol is the average
of three experiments. Error bars are the standard error of the mean.
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Fig. 7.

Nicotine (100 uM, closed symbols), but not nicotine+4R-cembranoid (100 and 1 uM
respectively, open symbols), induce withdrawal-like behaviors in planarians, as indicated (see
methods). Each symbol is the average of three experiments. Error bars are the standard error
of the mean. p-values (F-test) are indicated in the figure.
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Nicotine (100 uM, closed symbols), but not nicotine+4R-cembranoid (100 and 1 uM
respectively, open symbols), induce the “Scrunching/Squirming” behavior (see methods). The
two data sets are significantly different from each other (p<0.001; two-way ANOVA). Each
symbol is the average of three experiments. Error bars are the standard error of the mean.
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