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SYMMETRY AND SPECIALIZABILITY IN THE
CONTINUED FRACTION EXPANSIONS OF SOME

INFINITE PRODUCTS

J. MC LAUGHLIN

Abstract. Let f(x) ∈ Z[x]. Set f0(x) = x and, for n ≥ 1, define fn(x)
= f(fn−1(x)).

We describe several infinite families of polynomials for which the
infinite product

∞∏
n=0

(
1 +

1

fn(x)

)
has a specializable continued fraction expansion of the form

S∞ = [1; a1(x), a2(x), a3(x), . . . ],

where ai(x) ∈ Z[x] for i ≥ 1.
When the infinite product and the continued fraction are specialized

by letting x take integral values, we get infinite classes of real numbers
whose regular continued fraction expansion is predictable.

We also show that, under some simple conditions, all the real numbers
produced by this specialization are transcendental.

We also show, for any integer k ≥ 2, that there are classes of polyno-
mials f(x, k) for which the regular continued fraction expansion of the
product

k∏
n=0

(
1 +

1

fn(x, k)

)
is specializable but the regular continued fraction expansion of

k+1∏
n=0

(
1 +

1

fn(x, k)

)
is not specializable.

1. Introduction

The problem of finding the regular continued fraction expansion of an
irrational quantity expressed in some other form has a long history but
until the 1970’s not many examples of such continued fraction expansions
were known. Apart from the quadratic irrationals and numbers like eq, for
certain rational q, there were very few examples of irrational numbers with
predictable patterns in their sequence of partial quotients.

1991 Mathematics Subject Classification. Primary:11A55.
Key words and phrases. Continued Fractions.
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2 J. MC LAUGHLIN

Being able to predict a pattern in the regular continued fraction expansion
of an irrational number is not only interesting in its own right, but if one can
also derive sufficient information about the convergents, it is then sometimes
possible to prove that the number is transcendental.

In [10], Lehmer showed that certain quotients of modified Bessel functions
evaluated at various rationals had continued fraction expansions in which
the partial quotients lay in arithmetic progressions. He also showed that
similar quotients of modified Bessel functions evaluated at the square root
of a positive integer had continued fraction expansions in which the sequence
of partial quotients consisted of interlaced arithmetic progressions.

An old result, originally due to Böhmer [3] and Mahler [11], was redis-
covered by Davison [7] and Adams and Davison [1] (generalizing Davison’s
previous result in [7]). In this latter paper, the authors were able to deter-
mine, for any positive integer a ≥ 2 and any positive irrational number α,
the regular continued fraction expansion of the number

Sa(α) = (a− 1)
∞∑

r=1

1
abrαc(1.1)

in terms of the convergents in the continued fraction expansion of α−1. They
were further able to show that all such numbers Sa(α) are transcendental.

A generalization of Davison’s result from [7] was given by Bowman in [5]
and Borwein and Borwein [4] gave a two-variable generalization of (1.1) but
the continued fraction expansion in this latter case is not usually regular.

Shallit [15] and Kmos̆ek [8] showed independently that the continued frac-
tion expansions of the irrational numbers

∞∑
k=0

1
u2k

have predictable continued fraction expansions. This result was subse-
quently generalized by Köhler [9], by Pethö [13] and by Shallit [16] once
again.

In [12], Mendès France and van der Poorten considered infinite products
of the form

∞∏
h=0

(
1 + X−λh

)
,

where 0 < λ1 < λ2 < · · · is any sequence of rational integers satisfying a
certain growth condition and showed that such products had a predictable
continued fraction expansion in which all the partial quotients were poly-
nomials in Z[X]. They further showed that if the infinite product and con-
tinued fraction were specialized by letting X be any integer g ≥ 2, that all
such real numbers

γ =
∞∏

h=0

(
1 + g−λh

)
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so obtained were transcendental. Similar investigations, in which the con-
tinued fraction expansions of certain formal Laurent series are determined,
can be found in [19], [18], [20] and [2].

Let f(x) ∈ Z[x], f0(x) = x and, for i ≥ 1, fi(x) = f(fi−1(x)), the i-th
iterate of f(x). In [17], Tamura investigated infinite series of the form

θ(x : f) =
∞∑

m=0

1
f0(x)f1(x) · · · fm(x)

.

He showed, for all polynomials in a certain congruence class, that the con-
tinued fraction expansion of θ(x : f) had all partial quotients in Z[x]. He
further showed that if the series and continued fraction were specialized to
a sufficiently large integer (depending on f(x)), then the resulting number
was transcendental.

The infinite series
∑∞

k=0 1/x2k
, investigated by Shallit [15] and Kmos̆ek

[8] may be regarded as a special case of the infinite series
∑∞

k=0 1/fk(x), with
f(x) = x2. In a very interesting paper, [6], Cohn gave a complete classifica-
tion of all those polynomials f(x) ∈ Z[x] for which the series

∑∞
k=0 1/fk(x)

had a continued fraction expansion in which all partial quotients were in
Z[x]. By then letting x take integral values, he was able to derive expan-
sions such as the following:∑

n≥0

1
T4n(2)

= [0; 1, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1,

106597754640383, 3, 1, 23, 1, 3, 23, 1, 3, 18815, 1, 2, 1, 23, 3, 1, 23, · · · ],

where Tl(x) denotes the l-th Chebyshev polynomial, and also to derive the
continued fraction expansion for certain sums of series.

At the end of Cohn’s paper he listed a number of open questions and
conjectures. One of the problems he mentioned was finding a similar classi-
fication of all those polynomials f(x) ∈ Z[x] for which the regular continued
fraction expansion of the infinite product

(1.2)
∞∏

k=0

(
1 +

1
fk(x)

)
has all partial quotients in Z[x].

This turns out to be a technically more difficult problem. One reason is
that, given any positive integer k, there are classes of polynomials such as
f(x, k) = 2x + x2 + xk((−1)k + (1 + x)g(x)) for which the regular continued
fraction expansion of the product

∏k
n=0 (1 + 1/fn(x, k)) is specializable for

all polynomials g(x) 6≡ (−1)k+1(mod x) but the regular continued fraction
expansion of

∏k+1
n=0 (1 + 1/fn(x, k)) is not specializable. This is in contrast

to the infinite series case dealt with by Cohn, where
∑∞

k=0 1/fk(x) had a
specializable continued fraction expansion if and only if

∑3
k=0 1/fk(x) had

a specializable continued fraction expansion.
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In this paper we give several infinite classes of polynomials for which∏∞
n=0 (1 + 1/fn(x)) has a specializable regular continued fraction.
For the polynomials in these classes of degree at least three, we specialize

the product at (1.2) by letting x take positive integral values, producing
certain classes of real numbers. We examine the corresponding regular con-
tinued fractions to prove the transcendence of these numbers.

2. Some Preliminary Lemmas

Unless otherwise stated f(x), G(x), g(x) will denote polynomials in Z[x],
f0(x) := x and, for n ≥ 0, fn+1(x) := f(fn(x)). Sometimes, for clarity and
if there is no danger of ambiguity, f(x) will be written as f and fn(x) as fn.
Likewise, (f(x))m will be written as fm, (fn(x))m as fm

n , etc.
For a fixed f(x) ∈ Z[x], set∏

n

(f(x)) =
∏
n

(f) =
∏
n

:=
n∏

i=0

(
1 +

1
fi

)
and ∏

∞
(f(x)) =

∏
∞

(f) =
∏
∞

:=
∞∏
i=0

(
1 +

1
fi

)
.

Similarly, Sn(f(x)) = Sn(f) = Sn will denote the regular continued fraction
expansion (via the Euclidean algorithm) of

∏
n and S∞(f(x)) = S∞(f) =

S∞ will denote the regular continued fraction expansion of
∏
∞. (The more

concise forms will be used when there is no danger of ambiguity.)
Unless stated otherwise, the sequence of partial quotients in Sn will be

denoted by ~wn, so that Sn = [~wn].
If a partial quotient in a continued fraction is a polynomial in Z[x], it is

said to be specializable. A continued fraction all of whose partial quotients
are specializable is also called specializable. We say that a continued fraction
[a0, a1, . . . , an] has even (resp. odd ) length if n is even (resp. odd).

Since a form of the folding lemma will be used later, we state and prove
this for the sake of completeness. In what follows let ~w denote the word
a1, . . . , an,

←
w the word an, . . . , a1 and −←w the word −an, . . . ,−a1. For i ≥ 0,

let Ai/Bi denote the i-th convergent of the continued fraction [a0, a1, . . . ].
Recall that

An+1 = an+1An + An−1,(2.1)
Bn+1 = an+1Bn + Bn−1,

and

(2.2) AnBn−1 −An−1Bn = (−1)n−1.

We need the following preliminary results.
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Lemma 1. For j = 0, 1,

(2.3) [(−1)j←w] = (−1)j Bn

Bn−1
.

If a0 = 1, then

(2.4) [(−1)j ~w] = (−1)j Bn

An −Bn
,

and

(2.5) [(−1)j←w, (−1)j ] = (−1)j An

An−1
.

Proof. All of these follow easily from the correspondence between matrices
and continued fractions (easily proved by induction or see [22]):(

a0 1
1 0

)(
a1 1
1 0

)
· · ·
(

an 1
1 0

)
=
(

An An−1

Bn Bn−1

)
,

and (
−a0 1
1 0

)(
−a1 1
1 0

)
· · ·
(
−an 1
1 0

)
= (−1)n

(
−An An−1

Bn −Bn−1

)
.

�

Lemma 2. [19]

[a0; ~w, Y,−←w] =
An

Bn

(
1 +

(−1)n

Y AnBn

)
.

Proof. If we use (2.3), followed by (2.1) and then (2.2), we get that

[a0; ~w, Y,−←w] = [a0, ~w, Y,−Bn/Bn−1]

= [a0; ~w, Y −Bn−1/Bn]

=
An(Y −Bn−1/Bn) + An−1

Bn(Y −Bn−1/Bn) + Bn−1

=
An

Bn

(
1 +

(−1)n

Y AnBn

)
.

�

There are other forms of symmetry which will appear later so we give
the lemma below. Note that in all of these cases a0 = 1. We call these
symmetries “doubling” symmetries, following Cohn [6].

Lemma 3.

(2.6) [1; ~w, Y,−~w] =
An

Bn

(
1 +

(−1)n

An(Bn(Y + 1)−An + Bn−1)

)
.

(2.7) [1; ~w, Y,−←w,−1] =
An

Bn

(
1 +

1
(−1)nY AnBn − 1

)
.
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(2.8) [1; ~w, Y,
←
w, 1] =

An

Bn

(
1 +

1
(−1)nBn(Y An + 2An−1)− 1

)
.

(2.9) [1; ~w, Y, ~w] =
An

Bn

(
1 +

(−1)n

An(Bn(Y − 1) + An + Bn−1)

)
.

Proof. We give the proof only for (2.6), as (2.7), (2.8) and (2.9) follow sim-
ilarly. We use (2.4), followed by (2.1), to get that

[1; ~w, Y,−~w] = [1; ~w, Y,− Bn

An −Bn
]

= [1; ~w, Y + 1− An

Bn
]

=
An

(
Y + 1− An

Bn

)
+ An−1

Bn

(
Y + 1− An

Bn

)
+ Bn−1

.

The result follows from (2.2), after some simple algebraic manipulation.
�

Cohn proved a version of (2.8) in [6]. We also point out that the doubling
symmetry described at (2.6) occurs with some classes of polynomials such as
the f(x, k) = 2x + x2 + xk((−1)k + (1 + x)g(x)) mentioned above. However
Sn is not specializable for these polynomials, for n ≥ k + 1 (see Proposition
1) and we have not found S∞ to be specializable for any polynomials that
exhibit this kind of doubling symmetry.

For future reference we show how the various forms of symmetry found in
the above lemma will be used. Suppose that

∏
m, when expanded as a con-

tinued fraction, is equal to Sm = [1; ~w], that the numerator of the ultimate
convergent of Sm is Am and the denominator of the ultimate convergent is
Bm and that A′m and B′m are the numerator and denominator, respectively,
of the penultimate convergent, that Sm is specializable and that Sm+1 is
related to Sm in one of the ways shown in Lemma 2 or Lemma 3. (Ym is
used here instead of Y to show the dependence on m). Then∏

m+1

=
∏
m

(
1 +

1
fm+1

)
=

Am

Bm

(
1 +

1
fm+1

)
.

On the other hand, from the above lemmas,

Sm+1 =
Am

Bm

(
1 +

1
H(Am, Bm, A′m, B′m, Ym)

)
,

where H(Am, Bm, A′m, B′m, Ym) is a polynomial in its variables with integral
coefficients that is linear in Ym.

If solving the equation fm+1 = H(Am, Bm, A′m, B′m, Ym) for Ym leaves Ym

in Z[x] for all m then Sm is specializable for all m.
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For later use we also note that if x | (f + 1) then
∏

m simplifies to leave
fm in the denominator and, say, rm in the numerator. If (fm, rm) = 1
then, up to sign, the final numerator convergent of Sm is rm and the final
denominator convergent is fm. A similar situation also holds if (x + 1) | f .

As a result of the following lemma, polynomials of degree 2 and those of
degree 3 or more will be considered separately.

Lemma 4. If f(x) has degree greater than 2, then Sn+1 contains Sn at the
beginning of the expansion.

Proof. Suppose Sn = [1; a1, · · · , am] = p/q where the ai’s, p and q are
polynomials in Q[x]. Let [1; a1, · · · , ai] =: pi/qi and suppose that, via the
Euclidean algorithm, we have that

p = q + r1.(2.10)
q = a1r1 + r2.

r1 = a2r2 + r3.

...
rm−2 = am−1rm−1 + rm.

rm−1 = amrm.

By definition
∏

n+1 = p/q (1 + 1/fn+1) = p(fn+1 + 1)/(qfn+1) and to de-
velop the continued fraction expansion of

∏
n+1 one can apply the Euclidean

algorithm to this quotient. From (2.10):

p(fn+1 + 1) = q fn+1 + (r1fn+1 + p)

qfn+1 = a1(r1fn+1 + p) + (r2fn+1 − a1p)

(r1fn+1 + p) = a2(r2fn+1 − a1p) + (r3fn+1 + p(1 + a1a2))
....

Let r′−1 = p(fn+1 + 1), r′0 = qfn+1 and for 1 ≤ i ≤ m, set

r′i = rifn+1 + (−1)i+1p qi−1.

We next show that, for 0 ≤ i ≤ m− 1,

(2.11) r′i−1 = air
′
i + r′i+1.

This is clearly true for i = 0, 1 (a0 = 1). From (2.10), ri+1 = ri−1 − airi

and from the recurrence relation for the qi’s, qi+1 = ai+1qi + qi−1. Suppose
(2.11) is true for i = 0, 1, . . . , j − 1.

r′j−1 − ajr
′
j =

(
rj−1fn+1 + (−1)jp qj−2

)
− aj

(
rjfn+1 + (−1)j+1p qj−1

)
.

= (rj−1 − ajrj)fn+1 + (−1)j+2p(qj−2 + ajqj−1).

= rj+1fn+1 + (−1)j+2p qj .

= r′j+1.
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Thus (2.11) is true for 0 ≤ i ≤ m− 1.
All that remains to prove the lemma is to show that the degree of r′i+1 is

less than the degree of r′i for 0 ≤ i ≤ m− 1.
Let the degree of a polynomial b be denoted by deg(b). From the Euclidean

algorithm it follows that deg(ri+1) < deg(ri). Suppose deg(f) = r ≥ 3 so
that fi has degree ri and, since

∏n
i=0(1 + 1/fi(x)) = p/q, that

deg(p), deg(q) ≤ 1 + r + r2 + · · · rn = (rn+1 − 1)/(r − 1).

Thus, for 0 ≤ i ≤ m,

deg(p qi) ≤ deg(p q) ≤ 2(rn+1 − 1)/(r − 1) < rn+1 = deg(fn+1),

since r ≥ 3. This implies that, for 0 ≤ i ≤ m− 1,

deg(r′i+1) = deg(ri+1fn+1 + (−1)i+2p qi) = deg(ri+1fn+1)

< deg(rifn+1) = deg(rifn+1 + (−1)i+1p qi−1) = deg(r′i).

The result follows. �

Note that if deg(f) = 2 (so that deg(fj) = 2j) then the situation can be
quite different.

Lemma 5. Let f(x) be a polynomial of degree two and suppose Sn begins
with [1; a1, . . . , ak, ak+1]. If

(2.12) deg(ak+1) + 2
k∑

i=1

deg(ai) < 2n+1,

then Sn+1 begins with [1; a1, . . . , ak].

Proof. With the notation of Lemma 4 and its proof, [1; a1, a2, . . . , ak] will
be part of Sn+1 if

(2.13) deg(r′i+1) < deg(r′i), 0 ≤ i ≤ k.

Recall that r′i+1 = ri+1fn+1 + (−1)i+2p qi, so that (2.13) will follow if

deg(p qi) < deg(ri+1fn+1), 0 ≤ i ≤ k.

Let 0 ≤ i ≤ k. Since [1; a1, · · · , ai] = pi/qi, we have that

(2.14) deg(qi) =
i∑

j=1

deg(aj).

It is clear from (2.10) that deg(rj) = deg(aj+1) + deg(rj+1). This implies
that

(2.15) deg(ri+1) = deg(q)−
i+1∑
j=1

deg(aj).

Now (2.12), (2.14) and (2.15) imply that

deg(qi) + deg(q)− deg(ri+1) < 2n+1 = deg(fn+1).

The result follows, since deg(p) = deg(q). �
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We return to the case deg(f) ≥ 3. The implication of Lemmas 4 and 5
is that if deg(f) ≥ 2, then it makes sense to talk of the continued fraction
expansion of

∏∞
i=0 (1 + 1/fi) and, furthermore, that if deg(f) ≥ 3, then

S∞ is a specializable continued fraction if and only if Sn is a specializable
continued fraction for each integer n ≥ 0.

Remark: At this stage we are not concerned with whether the polynomials
which are the partial quotients in S∞ have negative leading coefficients or
take non-positive values for certain positive integral x. Negatives and zeroes
are easily removed from regular continued fraction expansions (see [21], for
example).

The following lemma means that we get the proof of the specializability
of the regular continued fraction expansion of

∏∞
k=0(1 + 1/fk(x)) for some

classes of polynomials f(x) for free.

Lemma 6. Suppose S∞(f) is specializable. Define g(x) by

(2.16) g(x) = −f(−x− 1)− 1.

Then S∞(g) is specializable.

Proof. If
∏∞

k=0(1+1/fk(x)) has a specializable continued fraction expansion
S∞(f(x)) := [1; a1(x), a2(x), . . . ], then

∏∞
k=0(1 + 1/fk(−x − 1)) has the

specializable continued fraction expansion

S∞(f(−x− 1)) = [1; a1(−x− 1), a2(−x− 1), . . . ].

Let g(x) be defined as in the statement of the lemma. For k ≥ 0,

gk(x) = −fk(−x− 1)− 1.

This is clearly true for k = 0, 1. Suppose it is true for k = 0, 1, . . . ,m.

gm+1(x) = g(gm(x)) = g(−fm(−x− 1)− 1)

= −f(−(−fm(−x− 1)− 1)− 1)− 1 = −fm+1(−x− 1)− 1.

Next, ∏
∞

(g(x)) =
∞∏

k=0

(
1 + gk(x)

gk(x)

)
=
∞∏

k=0

(
−fk(−x− 1)
−fk(−x− 1)− 1

)

=
∞∏

k=0

(
fk(−x− 1)

fk(−x− 1) + 1

)
.

From what has been said above, the final product has the regular continued
fraction expansion [0; 1, a1(−x−1), a2(−x−1), . . . ] and is thus specializable.

�

We next demonstrate one of the difficulties in trying to arrive at a com-
plete classification of all polynomials f(x) for which S∞(f) is specializable.
We need the following lemmas.
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Lemma 7. Let k be an indeterminate and let t be a non-negative integer.
Then

(2.17) (1 + k)
t∑

m=0

(−1)m(2k + k2)m

= kt+2ht(k) + (−1)t
(
2t+1 − 1

)
kt+1 +

t∑
m=0

(−1)mkm,

where ht(k) ∈ Z[k].

Proof. Upon taking the last term on the right side of (2.17) to the left side
and simplifying, we get that

(1 + k)
t∑

m=0

(−1)m(2k + k2)m −
t∑

m=0

(−1)mkm

= (1 + k)
1−

[
−(2k + k2)

]t+1

1− [−(2k + k2)]
− 1− (−k)t+1

1− (−k)

=
(−k)t+1 −

[
−(2k + k2)

]t+1

1 + k

= (−k)t+1 1− (2 + k)t+1

1 + k
.

The final quotient is clearly a polynomial in k, with constant term 1− 2t+1.
The result now follows. �

Lemma 8. Let k ≥ 2 be an integer and let g(x) ∈ Z[x] be such that g(x) is
not the zero polynomial if k = 2. Define

f(x) := 2x + x2 + xk((−1)k + (x + 1)g(x)).

For 0 ≤ n ≤ k, let

Bn = x

n∏
j=1

fj

fj−1 + 1
.

Then

(2.18)
fn

n

Bn
= Pn(x) +

2n(n−1)/2

x
,

for some Pn(x) ∈ Z[x].

Proof. Since x(x + 1) | f , it follows that Bi |f i+1
i , for i ≥ 0. This, together

with the definition of Bn, give that

fn
n

Bn
=

fn
n (fn + 1)
Bn−1fn

=
fn

n

Bn−1
+

fn−1
n

Bn−1
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From what has been said just above, the first term is in Z[x] and from the
definition of f(x) it follows that

fn−1
n

Bn−1
= rn(x) + 2n−1 fn−1

n−1

Bn−1
,

for some rn(x) ∈ Z[x]. Thus

fn
n

Bn
= sn(x) + 2n−1 fn−1

n−1

Bn−1
,

for some sn(x) ∈ Z[x]. The result follows upon iterating this last expression
downwards, noting that B0 = x. �

Proposition 1. Let k ≥ 2 be an integer and let g(x) ∈ Z[x] be such that
g(x) is not the zero polynomial if k = 2. Define

(2.19) f(x) = 2x + x2 + xk((−1)k + (x + 1)g(x)).

Then Sn(f) is specializable for n ≤ k. If g(x) 6≡ (−1)k+1 (mod x), then Sn

is not specializable for n > k.

Proof. We will show that the doubling symmetry at (2.6) can be used to
develop the continued fraction expansion of

∏
n, 1 ≤ n ≤ k. More precisely

we will show that if Sn = [1; ~wn] for 0 ≤ n ≤ k−1, with each partial quotient
in Sn a polynomial in Z[x], then

Sn+1 = [1; ~wn, Yn,−~wn],

for some Yn ∈ Z[x]. We will then show that Sk+1 is not specializable unless
g(x) ≡ (−1)k+1 (mod x) (which would have the effect of replacing k by k+1
in the statement of the form of f(x) above) and this, together with Lemma
4, will give the result.

Note first of all that S0 = [1; x] and S1 = [1; x,−f/(x(x + 1)),−x], so
that the doubling symmetry at (2.6) occurs with Y0 = −f/(x(x+1)). Next,
let n ∈ {0, . . . , k − 1} and suppose Sn = [1; ~wn] is specializable. We also
suppose that Sj was developed from Sj−1 via the doubling symmetry at
(2.6), for 1 ≤ j ≤ n (so that ~wn has odd length). Let An/Bn denote
the final approximant and A′n/B′n the penultimate approximant of Sn. We
further assume that

An = fn + 1, Bn = x

n∏
j=1

fj

fj−1 + 1
.(2.20)

Note that this holds for n = 0, 1. We also assume that if n ≥ 1, then

(2.21) Bn−1

∣∣∣∣
B′n−1 +

k−1∑
j=0

(−1)j+1f j
n−1

 .

This is true for n = 1 since B0 = x, B′0 = 1 and f0 = x.
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By the correspondence between continued fractions and matrices (see
[22]),

[1; ~wn]←→
(

An A′n
Bn B′n

)
.

Further, from Lemma 1 and its proof,

[1; ~wn, Yn,−~wn]←→
(

An A′n
Bn B′n

)(
Yn 1
1 0

)(
Bn B′n

An −Bn B′n −A′n

)
=
(

A2
n −AnBn(1 + Yn)−BnA′n −AnA′n + AnB′n(1 + Yn) + A′nB′n

Bn(An −Bn − YnBn −B′n) −BnA′n + BnB′n(1 + Yn) + B′2n

)
=:
(

An+1 A′n+1

Bn+1 B′n+1

)
.

If we set

(2.22) Yn = −1− −(1 + fn)2 + f1+n + B′n(1 + fn)
Bn (1 + fn)

,

and use the facts that An = fn+1 and that ~wn has odd length (so that A′n =
(−1 + B′nAn)/Bn = (−1 + B′n(fn + 1))/Bn, by the determinant formula),
then we get

(2.23)
(

An+1 A′n+1

Bn+1 B′n+1

)
=

 1 + f1+n
1 + fn −B′n − f1+n B′n

Bn
f1+n

1 + fn
Bn 1− f1+n

1 + fn
Bn
′

 .

It is clear that
An+1

Bn+1
=

(1 + f1+n)(1 + fn)
f1+nBn

=
1 + f1+n

f1+n

∏
n

=
∏
n+1

,

so that [1; ~wn, Yn,−~wn] gives the regular continued fraction expansion of∏
n+1 and is specializable, provided Yn ∈ Z[x]. Note also that (2.20) now

holds with n replaced by n + 1.
We show Yn ∈ Z[x]. From the definition of f(x) we have that

fn+1 = 2fn + f2
n + fk

n

(
(−1)k + (1 + fn)g(fn)

)
.

From (2.20) and the fact that x(x+1) | f , it follows that Bn | fn+1
n , and since

0 ≤ n ≤ k − 1, Bn | fk
n . Thus the result will follow if we can show that

(2.24) Bn

∣∣∣∣ (B′n +
(−fn)k − 1

fn + 1

)
or Bn

∣∣∣∣
B′n +

k−1∑
j=0

(−1)j+1f j
n

 .

Here and subsequently we mean divisibility in Z[x].
We now use the facts (clear from (2.23)) that

Bn = Bn−1
fn

fn−1 + 1
and B′n = 1−B′n−1

fn

fn−1 + 1
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to get that (2.24) will follow if

Bn−1
fn

fn−1 + 1

∣∣∣∣
−B′n−1

fn

fn−1 + 1
− fn

k−2∑
j=0

(−1)j+1f j
n

 ,

or

Bn−1

∣∣∣∣
B′n−1 +

k−2∑
j=0

(−1)j+1f j
n(1 + fn−1)

 .(2.25)

By the same argument as that just before (2.24), it follows that Bn−1 | fk
n−1,

so that (2.25) will hold if

Bn−1

∣∣∣∣
B′n−1 +

k−2∑
j=0

(−1)j+1(2fn−1 + f2
n−1)

j(1 + fn−1)

 .(2.26)

By (2.17),

k−2∑
j=0

(−1)j+1(2fn−1 + f2
n−1)

j(1 + fn−1) =
k−2∑
j=0

(−1)j+1f j
n−1 + fk−1

n−1h(fn−1),

with h(z) ∈ Z[z]. Since Bn−1 | fk−1
n−1 , we can ignore the second term on the

right above and increase the index on the sum from k − 2 to k − 1 for free,
and get that (2.26) will hold if

Bn−1

∣∣∣∣
B′n−1 +

k−1∑
j=0

(−1)j+1f j
n−1

 .(2.27)

However, this is true by (2.21) and thus Yn ∈ Z[x]. Note that (2.24) is
(2.21) with n replaced by n + 1, so that the induction can be continued and
Sn is specializable for 0 ≤ n ≤ k.

We next show that if g(x) = (−1)k+1 + b + x g1(x), with b 6= 0 and
g1(x) ∈ Z[z], then Sk+1 is not specializable. Define

(2.28) Y ′k := −1−
−(1 + fk)

2 + f1+k + B′k(1 + fk)
Bk (1 + fk)

+
2k(k−1)/2b

x
.

Firstly, we prove that Y ′k ∈ Z[x]. If (2.19) is used to write fk+1 in terms of
fk and we recall that Bk | fk+1

k , it can easily be seen that Y ′k ∈ Z[x] if it can
be shown that

(2.29) −
−1 + fk

k

[
(−1)k + (1 + fk)((−1)k+1 + b)

]
+ B′k(1 + fk)

Bk (1 + fk)

+
2k(k−1)/2b

x
∈ Z[x].



14 J. MC LAUGHLIN

The first fraction can be re-written as

(2.30) −
(
(−1)k+1 + b

) fk
k

Bk
−
(
−1 + (−fk)k

)
/(1 + fk) + B′k

Bk
.

By Lemma 8,
(2.31)

−
(
(−1)k+1 + b

) fk
k

Bk
= −

(
(−1)k+1 + b

)
Pn(x)−

2k(k−1)/2
(
(−1)k+1 + b

)
x

,

for some Pn(x) ∈ Z[x]. The second term in (2.30) can be written as

−

−
k−1∑
j=0

(−fk)j + B′k

Bk
= −

−
k−1∑
j=0

(−fk)j + 1−B′k−1

fk

1 + fk−1

Bk−1
fk

1+fk−1

=

−
k−2∑
j=0

(−fk)j(1 + fk−1) + B′k−1

Bk−1

= s(x) +

−
k−2∑
j=0

(−(2fk−1 + f2
k−1))

j(1 + fk−1) + B′k−1

Bk−1
,

for some s(x) ∈ Z[x]. Here we have used, in turn, the formulae from (2.23)
relating Bk to Bk−1 and B′k to B′k−1, (2.19) to write fk in terms of fk−1 and
the fact that Bk−1 | fk

k−1. Next, we use Lemma 7 to get that

−
k−2∑
j=0

(−(2fk−1 + f2
k−1))

j(1 + fk−1) + B′k−1

Bk−1

=

−fk
k−1hk−2(fk−1) + (−1)k−1(2k−1 − 1)fk−1

k−1 −
k−2∑
j=0

(−fk−1)j + B′k−1

Bk−1

= t(x) +

(−1)k−12k−1fk−1
k−1 −

k−1∑
j=0

(−fk−1)j + B′k−1

Bk−1

= t(x) + (−1)k−12k−1
fk−1

k−1

Bk−1
+

−
k−1∑
j=0

(−fk−1)j + B′k−1

Bk−1
,
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for some t(x) ∈ Z[x]. Here again we have used the fact that Bk−1 | fk
k−1.

Finally, Lemma 8 and (2.21) give that this last expression has the form

u(x) +
(−1)k−12k(k−1)/2

x
,

for some u(x) ∈ Z[x]. Thus

(2.32) −

−
k−1∑
j=0

(−fk)j + B′k

Bk
= v(x) +

(−1)k−12k(k−1)/2

x
,

for some v(x) ∈ Z[x]. That Y ′k ∈ Z[x] now follows by (2.29), (2.30), (2.31)
and (2.32).

Secondly, define αk by

[1; ~wk, Y
′
k, αk] =

∏
k+1

=
Ak

Bk

(
1 +

1
fk+1

)
.

Upon solving

αk(Y ′kAk + A′k) + Ak

αk(Y ′kBk + B′k) + Bk
=

Ak

Bk

(
1 +

1
fk+1

)
for αk and using (2.28) to eliminate Y ′k and the determinant formula to
eliminate A′k, we find

(2.33) αk = − Bkx

2k(k−1)/2bBk + (1 + fk −Bk)x
.

Since Ak = 1 + fk and
∏

k = Ak/Bk, fk and Bk have the same degree and
same leading coefficient, so that (1+fk−Bk)x has degree less than Bkx. This
implies that αk is a rational function whose numerator has higher degree in
x than its denominator, so that Sk+1 begins with [1; ~wk, Y

′
k]. Next,

(2.34)
(

αk −
−x

2k(k−1)/2b + 1

)−1

= −
(
2k(k−1)/2b + 1

) (
2k(k−1)/2bBk + (1 + fk −Bk)x

)
x (Bk − x− fkx + Bkx)

.

If b = 0 then f(x) has the form at (2.19), but with k replaced by k + 1 and,
from what has been shown already,

Sk+1 = [1; ~wk, Yk,−~wk] =
[
1; ~wk, Yk,−x,− 1 + fk −Bk

Bk − x− fkx + Bkx

]
.

The final term in the last continued fraction comes from letting b = 0 on the
right side of (2.34) and is a rational function whose numerator has degree
greater than its numerator. (This must be the case since when b = 0, Sk+1

has the form [1; ~wk, Yk,−x, . . . ], as each ~wk begins with x.) This implies
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that the rational function on the right side of (2.34) has the same property
and so, when b 6= 0,

Sk+1 =
[
1; ~wk, Y

′
k,

−x

2k(k−1)/2b + 1
, . . .

]
and is thus not specializable. The proof is now complete by Lemma 4. �

Corollary 1. Let k ≥ 2 be an integer and let g(x) ∈ Z[x] be such that
g(x) 6= 0 if k = 2. Let

f(x) = −x2 − (1 + x)k
(
1 + (−1)k+1 x g(x)

)
.

Then Sn is specializable for 0 ≤ n ≤ k. If g(x) 6≡ (−1)k+1(mod (x + 1)),
then Sn is not specializable for n > k.

Proof. This follows from Proposition 1 and Lemma 6. �

One reason we proved Proposition 1 was to show that it is not possible
to eliminate all classes of polynomials for which S∞ is not specializable by
simply looking at the continued fraction expansion of a finite number of
terms of the infinite product for a general polynomial (Cohn was able to do
this in the infinite series case by looking at just the first four terms).

3. Specializability of S∞ for various infinite families of
polynomials of degree greater than two

We can now show that the specializability of Sn occurs for all n for all
polynomials in several infinite families. We have the following theorem.

Theorem 1. Let f(x), G(x) and g(x) denote non-zero polynomials in Z[x]
such that the degree of f(x) is at least three. If f(x) has one of the following
forms,

(i) f(x) = x2(x + 1)g(x),

(ii) f(x) = x(x + 1)G(x)− x− 1,

(iii) f(x) = x(x + 1)2g(x)− 1

(iv) f(x) = x(x2 − 1)g(x) + 2x2 − 1

(v) f(x) = (x + 1)(x(x + 2)g(x)− 2(x + 1))

(vi) f(x) = x2(x2 − 1)g(x) + x2,

(vii) f(x) = x(x + 1)((x + 2)(x + 1)g(x)− 1)− x− 2,

then, for each n ≥ 0, Sn is a specializable continued fraction. Hence S∞ is
a specializable continued fraction.

Proof. We note that the proof of (iii) follows from the proof of (i) and
Lemma 6 and that the proof of (v) likewise follows from the proof of (iv)
and Lemma 6. However, we give independent proofs of (iii) and (v) since
we also wish to demonstrate the types of doubling symmetry exhibited by
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the corresponding continued fractions. The proof of (vii) can similarly be
deduced from the proof of (vi) and in this case no independent proof is given
(doubling symmetry is not involved for cases (vi) and (vii)).

As in the proof of Proposition 1, throughout let Ai/Bi denote the final
approximant, and A′i/B′i the penultimate approximant, of Si = [1; ~wi], for
each i ≥ 0.

(i) For this class of polynomials we will show that Sm+1 is derived from
Sm via the type of symmetry exhibited in the folding lemma (Lemma 2).
S0 = [1; x] is clearly specializable. Suppose that Sm is specializable. From
Lemma 2 and the discussion following Lemma 3 it is clear that Sm+1 is
specializable if AmBm | fm+1 in Z[x]. Since f(x) = x2(x + 1)g(x) it follows
that, for i ≥ 0,

(3.1) f2
i (fi + 1) |(fi+1 + 1).

Since (x + 1) | f we get after cancellation that∏
i

=
fi + 1

x
∏i−1

j=0 f2
j g(fj)

.

Since fj |fj+1 for j ≥ 0, each term in the denominator of the expression
divides fi and thus the numerator and denominator are relatively prime.
Thus, up to sign, Ai = fi + 1 and Bi = f2

i−1g(fi−1)Bi−1. (The first of these
holds for i ≥ 0 and the second for i ≥ 1). It follows easily by induction that
Bi | f2

i . The facts that Bm | f2
m and Am = ±(fm +1) together with (3.1) give

that
AmBm | fm+1.

Hence the result.

(ii) For this class of polynomial it will be shown that Sm is derived from
Sm−1 by adding a single new partial quotient. It is clear from the definition
of f(x) = x(x + 1)G(x)− x− 1 that, for i ≥ 0,

(fi + 1)|fi+1, fi|(fi+1 + 1), fi|fi+2.(3.2)

This implies that

(3.3)
∏

i

=
fi + 1

x
∏i−1

j=0 (fjG(fj)− 1)
=

(x + 1)
∏i−1

j=0((fj + 1)G(fj)− 1)
fi

.

This gives that Ai|(fi + 1), and Bi|fi, for all i ≥ 0. Next,

Ai+2

Bi+2
=

Ai

Bi

(fi+1 + 1)
fi+1

(fi+2 + 1)
fi+2

=
Ai

Bi

((fi+1 + 1)G(fi+1)− 1)
(fi+1G(fi+1)− 1)

We next show that

(Ai, fi+1G(fi+1)− 1) = (Bi, (fi+1 + 1)G(fi+1)− 1) = 1,
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so that, up to sign,

Ai+2 = ((fi+1 + 1)G(fi+1)− 1)Ai(3.4)

Bi+2 = (fi+1G(fi+1)− 1)Bi.

That (Bi, (fi+1 + 1)G(fi+1) − 1) = 1 is easily seen to be true since Bi | fi,
fi | fi+2, so that Bi | fi+2, but ((fi+1 + 1)G(fi+1)− 1) | (fi+2 +1). The proof
that (Ai, fi+1G(fi+1) − 1) = 1 is similar. We are now ready to prove that
Sn is specializable for n ≥ 0.

Initially, S0 = [1; x] and S1 = [1; x,−G]. It will be shown by induction
that Si = [1; α1, . . . , αi+1], where all the α′js ∈ Z[x] and (−1)ifi = Ai−1Bi.
Both statements are easily seen to be true for i = 0, 1.

Suppose these statements are true for i = 0, 1, . . . ,m − 1. Let Sm−1 =
[1;α1, . . . , αm]. Set

(3.5) αm+1 = −(fm−1 + 1)
Am−1

G(fm−1)Am−2,

which is in Z[x], since Am−1 | (fm−1 +1), by the remark following (3.3). Let
Cm+1 be the numerator of the final convergent of [1; α1, . . . , αm, αm+1] and
let Dm+1 be the denominator of the final convergent.

Cm+1 = αm+1Am−1 + Am−2 = −((fm−1 + 1)G(fm−1)− 1)Am−2

Dm+1 = αm+1Bm−1 + Bm−2 = −(fm−1G(fm−1)− 1)Bm−2

The final equality for Dm+1 uses the facts that Am−1Bm−2 −Am−2Bm−1 =
(−1)m−1 and (−1)m−1fm−1 = Am−2Bm−1. Hence, by (3.4), Cm+1/Dm+1 =
Am/Bm =

∏
m and Sm = [1; α1, . . . , αm, αm+1] . Finally,

Am−1Bm = Am−1(αm+1Bm−1 + Bm−2)

= −(fm−1 + 1)G(fm−1)Am−2Bm−1 + Am−1Bm−2

= −(fm−1 + 1)G(fm−1)(−1)m−1fm−1 + (−1)m−1fm−1 + (−1)m−1

= (−1)m(fm−1 + 1)(fm−1G(fm−1)− 1) = (−1)mfm.

The third equality also uses the facts that Am−2Bm−1 = (−1)m−1fm−1 and
Am−1Bm−2 −Am−2Bm−1 = (−1)m−1. Hence Sn is specializable for all n.

(iii) It will be shown that Sm+1 is derived from Sm via the doubling
symmetry found in (2.7). Suppose Sm = [1; ~wm]. It will be shown that Ym

can be chosen such that

Sm+1 = [1; ~wm, Ym,− ←wm,−1], Ym ∈ Z[x].(3.6)

Note that S0 = [1; x] and that S1 = [1; x,−G,−x,−1]. S1 has even length
and if S2, . . . , Sm have been defined using (3.6), then Sm has even length.
It can be seen from (2.7) that if Sm = Am/Bm and has even length, then
fm+1 = AmBmYm − 1 and Ym ∈ Z[x] if AmBm | (fm+1 + 1). This we now
show.
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Since f(x) = x(x + 1)2g(x) − 1, it follows that fj | (fj+1 + 1). After
cancellation, ∏

i

=
(x + 1)

∏i−1
j=0(fj + 1)2g(fj)

fi
,

so that Ai |
(
(x + 1)

∏i−1
j=0(fj + 1)2g(fj)

)
and Bi | fi. Thus it will be suffi-

cient to show that

fm(x + 1)
m−1∏
j=0

(fj + 1)2g(fj)
∣∣∣∣ (fm+1 + 1).

Suppose that

fi(x + 1)
i−1∏
j=0

(fj + 1)2g(fj)
∣∣∣∣ (fi+1 + 1),

for i = 0, 1, . . . ,m− 1 (this is clearly true for i = 0). Then

(x + 1)
m−2∏
j=0

(fj + 1)2g(fj)
∣∣∣∣ (fm + 1).

Since (fm−1 + 1)2g(fm−1) | (fm + 1) it follows that

=⇒ fm(x + 1)
m−1∏
j=0

(fj + 1)2g(fj)
∣∣∣∣ fm(1 + fm)2.

This completes the proof of (iii), since fm(1 + fm)2 | (fm+1 + 1).

(iv) The argument is similar to that used in the proof of (iii). It will be
shown that Sm+1 is derived from Sm using the doubling symmetry found
in (2.8).

Note that S1 = [1; x,−(x− 1)g(x)− 2, x, 1] and by induction we assume
Sm has the symmetric form exhibited in (2.8), so that A′m = Bm. Note also
that the induction means that Sm has even length, since the duplicating
formula always produces a continued fraction of even length.

It can be seen from (2.8) that

Sm+1 = [1; ~wm, Ym,
←
wm, 1]

and will be specializable if the equation

(3.7) Bm(AmYm + 2A′m) = fm+1 + 1

is solvable with Ym ∈ Z[x].
Since f(x) = x(x2 − 1)g(x) + 2x2 − 1 it can be seen that, for i ≥ 0,

fi | (fi+1 + 1), (f2
i − 1) | (fi+1 − 1).(3.8)
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After cancellation,

(3.9)
∏
m

=
(x + 1)

∏m−1
j=0 ((f2

j − 1)g(fj) + 2fj)
fm

.

Also, (3.8) implies that
m∏

j=0

(1 + fj)
∣∣∣∣ (f2

m − 1),

so that the numerator and denominator in (3.9) above are relatively prime.
Thus, up to sign Bm = fm and Am | (f2

m − 1).
Let

Ym =
fm

Bm

f2
m − 1
Am

g(fm),

so that Ym ∈ Z[x]. Upon using the facts that Bm = ±fm and (from above)
A′m = Bm, we get that

Bm(AmYm + 2A′m) = BmAmYm + 2B2
m

= fm(f2
m − 1)g(fm) + 2f2

m

= fm+1 + 1.

The result now follows by (3.7).
Cohn also gave a proof of (iv) in [6].

(v) In this case it will be shown that Sm+1 is derived from Sm using the
doubling symmetry found at (2.9).

Since S1 = [1; x,−G, x] and ~wi symmetric implies ~wi, Yi, ~wi is symmetric,
we have by induction that Sm has odd length and that ~wm is symmetric.
This gives that B′m = Am −Bm.

It can thus be seen from (2.9) that [1; ~wm, Ym, ~wm] will equal Sm+1 and
be specializable if the equation

(3.10) fm+1 = −Am(Bm(Ym − 2) + 2Am)

leads to Ym ∈ Z[x].
Since f(x) = (x+1)(x(x+2)g(x)−2(x+1)) it follows that (fj +1) |fj+1.
After cancellation,

(3.11)
∏
m

=
fm + 1

x
∏m−1

j=0 (fj(fj + 2)g(fj)− 2(fj + 1))
.

Further, since x(x + 2) | (f + 2), it follows that

m−1∏
j=0

fj

∣∣∣∣ (fm + 2).
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Thus the numerator and denominator in (3.11) above are relatively prime
so that, up to sign, Am = fm + 1 and Bm | fm(fm + 2). Let

Ym = 2− fm(fm + 1)(fm + 2)
AmBm

g(fm),

so that Ym ∈ Z[x]. The result now follows from (3.10), since

−AmBm(Ym − 2)− 2A2
m = (fm + 1)fm(fm + 2)g(fm)− 2(fm + 1)2

= fm+1.

(vi) It will be shown that, for this class of polynomials and m ≥ 1,
Sm+1 is derived from Sm by adding two terms. More precisely, if m ≥ 1,
Sm = [1; x, α1, β1, . . . , αm, βm] is specializable and

αm+1 := −(fm+1 − f2
m)

AmBm
,(3.12)

βm+1 := −AmBm,

then αm+1, βm+1 ∈ Z[x] and Sm+1 = [1; x, α1, β1, . . . , αm, βm, αm+1, βm+1].
Initially, S0 = [1; x], S1 = [1; x,−xg(x)(x− 1)− 1,−x(x + 1)] and

S2 = [1; x,−xg(x)(x−1)−1,−x(x+1),−f(f − 1)g(f)
x(x + 1)

,−x(x+1)f(f +1)],

so that (3.12) holds for m = 1. As part of the proof, it will be shown that,
for i ≥ 1,

Ai =
i∏

j=0

(fj + 1), Bi =
i∏

j=0

fj , A′i = − fi

Bi−1
.(3.13)

These equations are easily shown to be true for i = 1. Suppose that Si has
been defined via (3.12) for i = 2, . . . ,m, that the conditions at (3.13) are
true for i = 1, . . . ,m and that Sm is specializable.

We first show that αm+1 ∈ Z[x] (clearly βm+1 ∈ Z[x] if Sm is specializ-
able). Since f = x2((x2−1)g(x)+1), we have that x2 | f and (x2−1) | (f−1),
which imply that

m−1∏
j=0

fj

∣∣∣∣ fm,

m−1∏
j=0

(fj + 1)
∣∣∣∣ (fm − 1),

These conditions with (3.13) imply that AmBm | f2
m(f2

m− 1) and hence that
AmBm | (fm+1 − f2

m) and thus that αm+1 ∈ Z[x].
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Since S0 = [1;x], each Si has odd length (in particular, Sm has odd
length). Consider the following matrix product:(

Am A′m
Bm B′m

)(
αm+1 1

1 0

)(
βm+1 1

1 0

)
=
(

Am(αm+1βm+1 + 1) + A′mβm+1 Amαm+1 + A′m
Bm(αm+1βm+1 + 1) + B′mβm+1 Bmαm+1 + B′m

)

=

Am(fm+1 − f2
m + 1)−A′mAmBm −fm+1 − f2

m

Bm
+ A′m

Bm(fm+1 − f2
m + 1)−B′mAmBm −fm+1 − f2

m

Am
+ B′m


=

Am(fm+1 + 1) −fm+1

Bm

Bmfm+1
−fm+1 + 1

Am


=:
(

Cm+1 C ′m+1

Dm+1 D′m+1

)
.

For the fourth equality we have used the facts (induction step) that
Bm = fmBm−1, AmB′m − AmB′m = 1 (since Sm has odd length) and
A′m = −fm/Bm−1. By the definition of Cm+1, Dm+1,

Cm+1

Dm+1
=

Am(1 + fm+1)
Bmfm+1

=
∏
m

(
1 +

1
fm+1

)
=
∏
m+1

.

Thus, from the relationship between matrices and continued fractions, we
have that

Sm+1 = [1; x, α1, β1, . . . , αm, βm, αm+1, βm+1]

and (
Am+1 A′m+1

Bm+1 B′m+1

)
=

Am(fm+1 + 1) −fm+1

Bm

Bmfm+1
−fm+1 + 1

Am

 .

This equation also implies that (3.13) holds for i = m + 1 and the result
follows.

(vii) This follows from (vi) and Lemma 6. �

4. The Degree Two Case

In this section a complete classification is given of all polynomials f(x) of
degree two for which S∞ is specializable or can be transformed in a simple
way to produce a continued fraction which is specializable.

Essentially, the method is to start with a general polynomial

f(x) = ax2 + (b− 1)x + c− b− 1, a 6= 0,
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(this form makes the continued fraction a little easier to work with) and to
choose an integer n large enough so that some part of the continued frac-
tion expansion of

∏
n, say [1; a1(x), . . . , at(x)], forms part of the continued

fraction expansion of
∏
∞ (This follows by Lemma 5). The coefficients in

the ai(x) will be rational functions in a, b and c and the requirement that
the ai(x) ∈ Z[x], or that S∞ can be transformed to produce a continued
fraction that is specializable, will impose limiting conditions on a, b and c,
leading to the stated classification.

Define

num := (1 + b + a b− c− a c)
(
−1 + a2 − 2 a b + a c

)
+ a (a− b) (b− c) x

+ f
(
(1 + a− b + a b− a c)

(
−1 + a2 − 2 a b + a c

)
+ a (a− b)2 x

)
+ (1 + a b− a c)

(
−1 + a2 − 2 a b + a c

)
f2,

den := a

(
(b− c)

(
1− a2 + 2 a b− a c

)
×
[ (
−1 + b− b2 + a2 (−1− b + c) + a

(
−1 + b + b2 + c− b c

))
f

− 1− (−1 + a) b2 − (−1 + a (−2 + c)) c− b (1− 2 a (−1 + c) + c)
]

+ (b− c + (a− b) f) x

×
[
− 1 + b− b2 + a4 (b− c) + a (−1 + b (−1 + 3 b− 2 c) + 2 c)

− a3
(
−1 + b (−1 + 3 b) + c− 4 b c + c2

)
+ a2 (2 b− c)

(
−2 + b2 + c− b (1 + c)

) ])
,

β := −
a (1 + a b− a c)2

(
−1 + a2 − 2 a b + a c

)2
num

(a− b)4 den
.

Then (preferably using a computer algebra system such as Mathematica) it
can be shown that

(4.1)
∏
2

=
[
1;−1

a
+ x,−

a
(
−1− b2 + a c

)
(a− b)2

− a2 x

a− b
,

(a− b)2

a (1 + a b− a c)2 (−1 + a2 − 2 a b + a c)2
×(

−1+b3+a4(b− c)2+a (− (b (4 + 3b)) + 3c)+a2
(
1− 5b2 − 3c2 + b (3 + 8c)

)
+ a3

(
−1− 2 b3 − 2 c + 5 b2 c + c3 + b

(
2− 4 c2

)))
+

(a− b)3 x

(1 + a b− a c) (−1 + a2 − 2 a b + a c)
, β

]
.
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In what follows we will make use of a remark of Cohn in [6]: that if
the first partial quotient in a continued fraction with non-integral coeffi-
cients has a non-integral coefficient other than the constant term then the
continued fraction is not specializable. (We will see that some continued
fractions with partial quotients in which the constant term is non-integral
can be transformed to make them specializable). Also, polynomials whose
coefficients satisfy one of the conditions

a− b = 0, 1 + a b− a c = 0, − 1 + a2 − 2 a b + a c = 0(4.2)

will be considered separately. If none of these three equalities hold, then the
numerator of β has degree four and the denominator has degree three. Note
that the cofactor of (b− c + (a− b) f) x in den is not zero for any triple of
integers (a, b, c). This means that if the coefficients of f(x) do not satisfy
one of the conditions at (4.2), then the next regular partial quotient in S2

is linear in x, so that

deg(a4(x)) + 2
3∑

i=1

deg(ai(x)) = 7 < 23.

Thus, by Lemma 5, Sn begins with the first four partial quotients in the
continued fraction at (4.1), if n ≥ 2.

For specializability, it is necessary to have (b− a) | a2 in the third partial
quotient (the case a = b is to be examined separately). Write b − a = u2v,
with v square-free. Since u2 | a2, then u | a, so write a = us. Since u2v | a2,
then v | s2, which implies v | s (v is square-free), or s = v w. Thus, for
specializability, it is necessary to have

a = u v w, b = u2v + u v w,

for some integers u, v and w. If we substitute for a and b in the coefficient
of x in the fourth partial quotient, then specializability requires

u6 v3

(−1 + u v w (c− u v (u + w))) (−1 + u v w (c− u v (2 u + w)))
∈ Z.

A check shows that happens only for

(a, b, c) ∈ {(2, 3, 4), (−2,−3,−4), (2, 1, 1), (−2,−1,−1)},

or
f ∈ {2x2 + 2x, −2x2 − 4x− 2, 2x2 − 1, −2x2 − 2x− 1}.

That
∏
∞ is not specializable for the first and fourth polynomials follows

from consideration of S3 and Lemma 5. We will show that specializability
occurs for the third polynomial and specializability for the second will follow
from this fact and Lemma 6.

We next consider the case a = b, proceeding as previously. Suppose

f = ax2 + (a− 1)x + c− a− 1,
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and we define

num :=
(
1 + a2 − a c

) [
(1 + f) (1 + x) (−1 + a x) (1 + f3) +

f2 ((1 + f) (1 + x) (−1 + a x)− (f − (1 + x) (−1 + a x)) f3)
]
,

den := a2 x (1 + x)
[
− (a f f2 f3)

+
(
−1 + a

(
−1 + c− x + a

(
−1 + x + x2

)))
× ((1 + f) (1 + f3) + f2 (1 + f + f3))

]
,

β :=
num

den
.

Then (preferably once again using a computer algebra system such as Math-
ematica) it can be shown that

(4.3)
∏
3

=
[
1;−1

a
+ x, a +

a3 x

−1− a2 + a c
+

a3 x2

−1− a2 + a c
, β

]
.

Further, the numerator of β has degree twelve and the denominator has
degree ten and the leading coefficient in the numerator or denominator does
not vanish except in the case

(
1 + a2 − a c

)
, which is examined separately.

This all means that, apart from this exceptional case, the next partial quo-
tient in the regular expansion of

∏
3 has degree two. Thus

deg(a3(x)) + 2
2∑

i=1

deg(ai(x)) = 8 < 24,

so that Sn starts with[
1;−1

a
+ x, a +

a3 x

−1− a2 + a c
+

a3 x2

−1− a2 + a c
, . . .

]
for n ≥ 3 (this once again by Lemma 5). This in turn implies that special-
izability requires

(−1− a2 + a c) | a3,

and it is not difficult to see that this needs −1 − a2 + a c = ±1. A check
shows that the only solutions in this case are

(a, b, c) ∈ {(a, a, a), (1, 1, 3), (−1,−1,−3), (2, 2, 3), (−2,−2,−3)},

or

f ∈ {ax2 + (a− 1)x− 1, x2 + 1, −x2 − 2x− 3, 2x2 + x, −2x2 − 3x− 2}.

We will show specializability for the case f(x) = ax2 + (a − 1)x − 1. A
more extensive consideration of S3 shows that S∞ is not specializable for the
remaining four of these polynomials. Note that for f(x) = ax2+(a−1)x−1,
−f(−x− 1)− 1 = f(x), so that Lemma 6 gives nothing new.

We return to the exceptional case −1 − a2 + a c = 0, which is solvable
only for

(a, b, c) ∈ {(1, 1, 2), (−1,−1,−2)},
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or

f ∈ {x2, −x2 − 2x− 2}.

We will show specializability for the first of these polynomials and special-
izability in the second case will follow from this and Lemma 6.

For the exceptional case 1+ab−ac = 0 it is clear that a = ±1 is necessary.
For a = 1, c = b + 1 and an examination of the third partial quotient in S2

shows b ∈ {0, 1, 2} is necessary. Consideration of S4 eliminates b = 0 and
b = 2 (using Lemma 5) and b = 1 gives f(x) = x2 (encountered above).
For a = −1, c = b − 1 and an examination of the third partial quotient in
S2 shows b ∈ {0,−1,−2} is necessary. Lemma 5 and consideration of S4

eliminate b = 0 and b = 2. The case b = −1 gives f(x) = −x2 − 2x − 2
(encountered above).

Lastly, for the exceptional case −1+a2−2 a b+a c = 0, it is obvious that
a = ±1 is again necessary, and in each case c = 2b. Consideration of S3 in
the case a = 1 shows that b ∈ {0, 1, 2} is necessary. Looking at S4 eliminates
b = 0 and b = 2 and b = 1 gives f(x) = x2, which has been encountered
above. Likewise, the case a = −1 necessitates b ∈ {0,−1,−2}. Only b = −1
is of interest, giving once again f(x) = −x2 − 2x− 2.

The reasoning above leads to the following theorem.

Theorem 2. Let f(x) ∈ Z[x] be a polynomial of degree two such that
∏
∞(f)

has a specializable continued fraction expansion. Then

(4.4) f(x) ∈ {x2, −x2−2x−2, 2 x2−1, −2x2−4 x−2, a x2+(a−1)x−1}.

Proof. The necessity of (4.4) has already been shown. Also, by Lemma 6, it
is enough to show sufficiency for the first, third and fifth of the polynomials
in this list.

(i) If f(x) = x2, then

n∏
i=0

(
1 +

1
fj

)
=

n∏
i=0

(
1 +

1
x2j

)

=

2n∑
j=0

xj

x2n

=
x2n+1 − 1
x2n(x− 1)

=
[
1;x− 1,

x2n − 1
x− 1

]
,

which is clearly specializable for x 6= 1, and S∞ = [1; x− 1].
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(ii) If f(x) = 2x2 − 1, then

S1 = [1; x− 1/2,−4x− 2],(4.5)

S2 = [1; x− 1/2,−4x, x,−4x− 2],

S3 = [1; x− 1/2,−4x, x,−4x, x,−4x, x,−4x− 2].

We will show that if Sn = [1; x − 1/2, ~ωn, −4x − 2], with ~ωn specializable,
then

Sn+1 = [1; x− 1/2, ~ωn, −4x, x, ~ωn, −4x− 2].

This can be seen to be true for n = 1 and n = 2. Let Tn+1 denote the
continued fraction which we claim is equal to Sn+1. By induction ~ωn is
made up of the pair of terms −4x, x repeated a certain number of times,
and if Tn+1 = Sn+1, then it is easy to see that ~ωn+1 will have the same form.
We will also show, for i ≥ 2, that Ai = (1 + x)2i+1

∏i−1
j=0 fj and

(
Ai A′i
Bi B′i

)
=

Ai
fi

2
− Ai

4
2fi

f2
i − 1
Ai

− fi

2

 .(4.6)

This is easily checked for i = 2 from (4.5). Suppose it is true for i = 2, . . . , n.
The continued fraction Tn+1 can be constructed as follows: take Sn, re-

move the final term −4x−2, add the terms −4x and x and then append an-
other copy of Sn which has the first two terms (1 and x−1/2) removed. Thus,
by the correspondence between continued fractions and matrices which we
have used several times already,

Tn+1 ∼
(

An A′n
Bn B′n

)(
0 1
1 4x + 2

)(
−4x 1

1 0

)(
x 1
1 0

)
×
(

0 1
1 −x + 1/2

)(
0 1
1 −1

)(
An A′n
Bn B′n

)
=
(

An A′n
Bn B′n

)(
1/2 1/2
2 0

)(
An A′n
Bn B′n

)

=

 An (An + Bn + 4 A′n)
2

An A′n + 4 A′n
2 + An B′n

2
An Bn + B2

n + 4 An B′n
2

Bn A′n + Bn B′n + 4 A′n B′n
2



=

 2 An fn
−1−An fn + 2 fn

2

2

2
(
−1 + 2 fn

2
) −

(
−An + 4 fn + 2 An fn

2 − 4 fn
3
)

2 An


=:
(

Cn+1 C ′n+1

Dn+1 D′n+1

)
.
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The next-to-last equality comes from substituting for A′n, Bn and B′n from
(4.6). Next,

Cn+1

Dn+1
=

2 An fn

2
(
−1 + 2 fn

2
) =

An

Bn

2f2
n(

−1 + 2 fn
2
) =

∏
n

(
1 +

1
fn+1

)
=
∏
n+1

,

so that Tn+1 = Sn+1. Here we have also used the fact that Bn = 2fn. It
is also now easy to check that (4.6) now holds with i = n + 1, so that the
induction continues. Thus

S∞ = [1; x− 1/2,−4x, x ]

and all that remains is to show that the expansion can be manipulated to
remove the “1/2” from the first partial quotient. This follows from the
identity

(4.7)
[
x +

1
a
; c, α

]
=
[
x; a, −c + a

a2
,−a2α

]
.

If this identity is applied repeatedly, it follows that∏
∞

= [1; x− 1/2, −4x, x, −4x, x − 4x, x, −4x, x, . . . ]

= [1; x, −2, x + 1/2, −4x, x, −4x, x, −4x, x, −4x, . . . ]

= [1; x, −2, x, 2, x− 1/2, −4x, x, −4x, x, −4x, x, −4x, . . . ]
...

= [1; x, −2, x, 2 ],

which is specializable. This completes the proof for f(x) = 2x2 − 1.
(iii) If f(x) = a x2 + (a− 1)x− 1, then

S1 = [1; x− 1/a],
(4.8)

S2 = [1; x− 1/a, −a3x2 − a3x + a],

S3 = [1; x− 1/a,−a3x2 − a3x + a, ax2 + (a− 2)x− 1 + 1/a],

S4 = [1; x− 1/a, −a3x2 − a3x + a, ax2 + (a− 2)x− 1 + 1/a,

− a3 x (1 + x)
(
−1− a x + a2 x + a2 x2

) (
−1− a− a x + a2 x + a2 x2

)
].

The situation is somewhat similar to case (ii) in Theorem 1 (going from
∏

n
to
∏

n+1 adds one new term to the continued fraction expansion), but the
presence of the 1/a term in some partial quotients is troublesome, necessi-
tating a different approach.

Define α1, . . . , α4 by

S4 = [1; α1, α2, α3, α4],
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and for n ≥ 2, define

α2n+1 = α3

n−1∏
i=1

(a f2i − 1)(a(f2i + 1)− 1) = α3

n−1∏
i=1

f2i+1(f2i+1 + 1)
(f2i + 1)f2i

,

(4.9)

α2n+2 = α4

n−1∏
i=1

(a f2i+1 − 1)(a(f2i+1 + 1)− 1) = α4

n−1∏
i=1

f2i+2(f2i+2 + 1)
(f2i+1 + 1)f2i+1

.

(4.10)

The second equalities follow from the definition of f(x). It is clear from these
definitions and (4.8) that, for n ≥ 1, α2n+2/a3 ∈ Z[x, a] and α2n+1 − 1/a ∈
Z[x, a]. We will show that

(4.11) Sn = [1; α1, . . . , αn],

for each integer n ≥ 1. Let An/Bn denote the final convergent of the right
side of (4.11). As part of the proof, we will show that, for n ≥ 1,

A2n+1 = A1(−1)n
n∏

i=1

(a(f2i + 1)− 1) = A1(−1)n
n∏

i=1

f2i+1 + 1
f2i

,(4.12)

A2n+2 = A2(−1)n
n∏

i=1

(a(f2i+1 + 1)− 1) = A2(−1)n
n∏

i=1

f2i+2 + 1
f2i+1

,

B2n+1 = B1(−1)n
n∏

i=1

(a f2i − 1) = B1(−1)n
n∏

i=1

f2i+1

f2i + 1
,

B2n+2 = B2(−1)n
n∏

i=1

(a f2i+1 − 1) = B2(−1)n
n∏

i=1

f2i+2

f2i+1 + 1
.

Once again the second equalities follow in each case from the form of f(x).
With these values, we have, for n ≥ 1, that

A2n+1

B2n+1
=

A1

B1

n∏
i=1

(f2i+1 + 1)(f2i + 1)
f2i+1f2i

=
A1

B1

2n+1∏
i=2

(
1 +

1
fi

)
=
∏

2n+1

.

Similarly,
A2n+2

B2n+2
=
∏

2n+2

,

for n ≥ 1. Thus to prove (4.11) it is sufficient to prove (4.12). It is not
difficult to check that (4.12) holds for n = 1. Suppose it holds for n =
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1, 2, . . . ,m.

A2m+3 = α2m+3A2m+2 + A2m+1

= α3

m∏
i=1

f2i+1(f2i+1 + 1)
(f2i + 1)f2i

×A2(−1)m
m∏

i=1

f2i+2 + 1
f2i+1

+ A1(−1)m
m∏

i=1

f2i+1 + 1
f2i

= (−1)m
m∏

i=1

f2i+1 + 1
f2i

(
α3A2

f2m+2 + 1
f2 + 1

+ A1

)

= (−1)m
m∏

i=1

f2i+1 + 1
f2i

(−aA1(f2m+2 + 1) + A1)

= (−1)m+1
m+1∏
i=1

f2i+1 + 1
f2i

.

The next-to-last equality follows from the fact that

(4.13)
α3A2

f2 + 1
= −aA1,

and the last equality from the fact that f2m+3+1 = f2m+2(a(f2m+2+1)−1).
The proof that A2m+4 has the form stated by (4.12) is similar, except

that we use the fact that

(4.14)
α4A1

f2
= aA2,

The proofs that B2m+3 and B2m+4 have the forms stated by (4.12) are
similar, except that we use, in turn, the facts that

α3B2

f2
= −aB1,(4.15)

α4B1

f2 + 1
= aB2.

This completes the proof of (4.11). What remains is to show is that S∞ can
be transformed into a specializable continued fraction. It is clear from (4.8)
and the remarks following (4.9) that we can write

S∞ =[
1;x− 1

a
,−a3(x2 + x) + a, β3 +

1
a
, a3β4, . . . , β2n+1 +

1
a
, a3β2n+2, . . .

]
,
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where each βi ∈ Z[a, x]. Proof of specialization now easily from a single
application of (4.7), starting with the first partial quotient.

S∞

=
[
1;x +

1
−a

,−a3(x2 + x) + a, β3 +
1
a
, a3β4, . . . , β2n+1 +

1
a
, a3β2n+2, . . .

]
=
[
1;x, (−a),−−a3(x2 + x) + a + (−a)

(−a)2
,−(−a)2

(
β3 +

1
a

)
,

a3β4

−(−a)2
,

. . . ,−(−a)2
(

β2n+1 +
1
a

)
,
a3β2n+2

−(−a)2
, . . .

]
=
[
1;x, −a, a(x2 + x),−a2β3 − a,−aβ4, . . . ,−a2β2n+1 − a,−aβ2n+2, . . .

]
,

which is specializable. This completes the proof of Theorem 2. �

5. Specialization and Transcendence

In what follows, we assume f(x) ∈ Z[x] and M ∈ Z are such that fj(M) 6=
0,−1, for j ≥ 0 and fi(M) 6= fj(M) for i 6= j.

For any of the polynomials f in Theorems 1 and 2, S∞(f) will typically
have some partial quotients which are polynomials in x with negative leading
coefficients. It may also happen that if S∞(f) is specialized by letting x
assume integral values, that negative or zero partial quotients may appear in
the resulting continued fraction. These are easily removed, as the following
equalities show (see also [21]).

[. . . , a, b, 0, c, d, . . . ] = [. . . , a, b + c, d, . . . ],

[. . . , a,−b, c, d, e, . . . ] = [. . . , a− 1, 1, b− 1,−c,−d,−e, . . . ]

Thus, if M is an integer, repeated application of the identities above will
transform S∞(f(M)) to produce the regular continued fraction expansion
of the corresponding real numbers.

A natural question is whether these numbers are transcendental or not.
We will make use of Roth’s Theorem.

Theorem 3. (Roth [14]) Let α be an algebraic number and let ε > 0. Then
the inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

has only finitely many solutions with p ∈ Z, q ∈ N.

We have the following theorem for the case where the degree of f(x) is at
least three.

Theorem 4. Let f(x) ∈ Z[x] and M ∈ Z be such that fj(M) 6= 0,−1, for
j ≥ 0 and fi(M) 6= fj(M) for i 6= j.
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If either deg(f) > 3 or deg(f) = 3 and either x | (f + 1) or (x + 1) | f ,
then

∞∏
i=0

(
1 +

1
fi(M)

)
is transcendental.

Proof. Let f and M satisfy the conditions stated in the theorem and suppose
that deg(f) = d and that

f(x) = Lxd + a1x
d−1 + · · ·+ ad−1x + ad =: Lxd

(
1 +

β(x)
x

)
.

Define βi := β(fi(M)) so that |βi| ≤
∑d

i=1 |ai| for all i and M . Then for
k ≥ 1,

fk(M) = L (fk−1(M))d

(
1 +

βk−1

fk−1(M)

)
= L

dk−1
d−1 Mdk

k−1∏
i=0

(
1 +

βi

fi(M)

)dk−1−i

.

Note that the second equality for fk(M) also holds for k = 0, upon taking,
as usual, the empty product to be equal to 1. Also,

N∏
k=0

fk(M) = L
1

d−1

(
dN+1−1

d−1
−(N+1)

)
M

dN+1−1
d−1

N−1∏
i=0

(
1 +

βi

fi(M)

) dN−i−1
d−1

.

Then (∏N
k=0 fk(M)

)d−1

fN+1(M)
= L−(N+1)M−1

N∏
i=0

(
1 +

βi

fi(M)

)−1

.

Since fi(M) 6= 0 for any i and the βi are absolutely bounded, the product
on the right converges, so that

1
fN+1(M)

= O

 1(∏N
k=0 fk(M)

)d−1

 .(5.1)

On the other hand, if we set α =
∏
∞(f(M)) and pN/qN =

∏
N (f(M)) in

Roth’s theorem, then it is not difficult to see that∣∣∣∣α− pN

qN

∣∣∣∣ = O

(
1

fN+1(M)

)
.

Since qN |
∏N

k=0 fk(M), (5.1) gives that∣∣∣∣α− pN

qN

∣∣∣∣ = O

(
1

qd−1
N

)
.
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If d ≥ 4, then ∣∣∣∣α− pN

qN

∣∣∣∣ < 1
q2+ε
N

has infinitely many solutions for ε = 1/2, say, and thus
∏
∞(f(M)) is tran-

scendental. If d = 3 and x |(f + 1), then qN | fN (M) and since

fN+1(M) = L (fN (M))3
(

1 +
βN

fN (M)

)
we get that

(5.2)
∣∣∣∣α− pN

qN

∣∣∣∣ = O

(
1

q3
N

)
,

so that once again
∏
∞(f(M)) is transcendental. The case d = 3 and (x +

1) |f is similar, in that in this case pN | (fN (M) + 1). Also, qN is within a
constant factor of pN , so that (5.2) holds and Roth’s theorem once more
gives transcendence. �

Corollary 2. If f(x) has any of the forms in the statement of Theorem 1
and M ∈ Z is such that fj(M) 6= 0,−1, for j ≥ 0 and fi(M) 6= fj(M) for
i 6= j, then

∏
∞(f(M)) is transcendental.

Proof. Each polynomial in the statement of Theorem 1 satisfies the condi-
tions of Theorem 4. �

In the proof of Theorem 4 we were able to show the transcendence of∏
∞(f(M)) when f(x) had degree three only for the special cases where

x | (f + 1) or (x + 1) | f . If f(x) ∈ Z[x] is a polynomial of degree three such
that x - (f+1) and (x+1) - f , and M is an integer such that fj(M) 6= 0,−1
for any j and fj(M) 6= fk(M) for j 6= k, is the infinite product

∞∏
j=0

(
1 +

1
fj(M)

)
transcendental? If this is false, find a counter-example.

With this question in mind, we investigated the possibility that

(5.3)
∞∏

j=0

(
1 +

1
fj(x)

)
=

√
a x + b

a x + c
,

for a polynomial f(x) = r x3 + s x2 + t x + u ∈ Z[x] and integers a, b and c.
(The coefficient of x is the same in the numerator and denominator of the
rational function on the right, since the infinite product on the left tends
to one as x tends to infinity.) Upon replacing x by f(x), dividing the new
equation into the old and squaring both sides, we get(

1 +
1
x

)2 a f(x) + b

a f(x) + c
=

a x + b

a x + c
.
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However, comparing coefficients shows that there is no polynomial f(x) with
integral coefficients satisfying (5.3). Interestingly, this approach does lead
to the following “near miss”: if f(x) = 4x3 +6x2−3/2 and M is any integer
different from −1, then

∞∏
j=0

(
1 +

1
fj(M)

)
=

√
2M + 3
2M − 1

.

It is not evident to the author how to extend Theorem 4 to the remaining
polynomials in Z[x] of degree three.

For the polynomials of degree two in Theorem 2, only f(x) = a x2 +
(a − 1)x − 1 needs investigation. We have shown

∏
∞(f(M)) converges to

a rational number for f(x) = x2, M 6= 1 (and thus a similar situation holds
for f(x) = −x2 − 2x− 2, by Lemma 6).

For f(x) = 2 x2−1,
∏
∞(f(M)) has an infinite periodic regular continued

fraction expansion (after removing negatives and zeroes) when M 6= 0,±1,
and so

∏
∞(f(M)) converges for M 6= 0,±1 to a quadratic irrational, namely

sign(M)(M + 1)/
√

M2 − 1. A similar situation holds for f(x) = −2 x2 −
4 x− 2, again by Lemma 6.

For f(x) = a x2 + (a − 1)x − 1, it is not difficult to show from (4.9) and
(4.12) that if x 6= −1, 0 or 1 (in the case a = 1) or −2 (in the case a = −1),
then

(5.4) lim
n→∞

B2n+1

α2n+2

can be written as a convergent infinite product. If an irrational number α
has regular expansion [a0; a1, . . . ] and its N -th approximant is pN/qN then

(5.5)
∣∣∣∣α− pN

qN

∣∣∣∣ < 1
q2
NaN+1

,

for all N ≥ 0. If all the negatives are removed from S∞(f(M)), then α2n+2

will increase or decrease by at most 2 to α′2n+2, say. The approximant
immediately before α′2n+2 will still be still be A2N+1/B2N+1. Thus (5.4)
and (5.5) will give that∣∣∣∣∣∏

∞
(f(M))− A2N+1

B2N+1

∣∣∣∣∣ = O

(
1

|B2N+1|3

)
and Roth’s theorem gives that

∏
∞(f(M)) is transcendental.

We now look at some particular examples of specialization. As Cohn
showed in [6], if l ≡ 2 mod 4, and Tk(x) denotes the k-th Chebyshev poly-
nomial then

∞∏
j=0

(
1 +

1
Tlj (x)

)
has a specializable continued fraction expansion with predictable partial
quotients. This follows from Theorem 1 (iv), using the facts that T1(x) =
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x, that if l ≡ 2 mod 4 then Tl(x) ≡ 2x2 − 1 mod x(x2 − 1) and that
Ta(Tb(x)) = Tab(x), for all positive integers a and b. For example, setting
l = 6 and x = 3, we get after removing negatives, that

∞∏
j=0

(
1 +

1
T6j (3)

)
=

[1; 2, 1, 1632, 1, 2, 1, 3542435884041835200, 1, 2, 1, 1632, 1, 2, 1,

26029539217771234538544216588488566196402655804477165253
9336341222077618284068468732496046837200411447595913600,

1, 2, 1, 1632, 1, 2, 1, 3542435884041835200, 1, 2, 1, 1632, 1, 2, 1, . . . ].

In part (vi) of Theorem1, setting g(x) = (x2k−2−1)/(x2−1) gives f(x) =
x2k, for k ≥ 2, so that

∞∏
j=0

(
1 +

1
x(2k)j

)
has a specializable continued fraction expansion with predictable partial
quotients. This result can also be found in [12], where the formulae for the
partial quotients that we have are also given. For example, if k = 2 and
x ≥ 2 is a positive integer, then
∞∏

j=0

(
1 +

1
x4j

)
=
[
1;x− 1, 1, x(x− 1), x(x + 1),

x3(x− 1)(x2 + 1), x5(x + 1)(x4 + 1),

x11(x− 1)(x2 + 1)(x8 + 1), x21(x + 1)(x4 + 1)(x16 + 1), . . . ,

x(2×4i+1)/3(x− 1)
i−1∏
j=0

(x2×4j
+ 1), x(4i+1−1)/3(x + 1)

i∏
j=0

(x4j
+ 1), . . .

]
.

6. Concluding Remarks

Ideally, one would like to have a complete list of all classes of polynomials
f(x) for which

∏∞
n=0(1 + 1/fn) has a specializable continued fraction ex-

pansion. We hesitate to conjecture that our Theorems 1 and 2 give such a
complete list, since there may be other classes of polynomials for which S∞
displays more complicated forms of duplicating symmetry. One reason for
suspecting this is that Cohn [6] found some quite complicated duplicating
behavior for several classes of polynomials. One example he gave was the
class of polynomials of the form

f(x) = x3 − x2 − x + 1 + x2(x− 1)2g(x),

with g(x) ∈ Z[x]. If Sn =
∑n

j=0 1/fj = [0;~sn], then, for n ≥ 3,

(6.1) Sn = [0;~sn−1, Xn,−~sn−2, 0, ~sn−4, Yn−2, 0, Zn,−←s n−4, Yn,
←
s n−2],
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where the Xi, Yi and Zi are polynomials in Z[x]. It is not unreasonable
to suspect similar such complicated behavior might also exist in the infinite
product case.

We hope the results in this paper will stimulate further work on this
problem.
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