West Chester University

[Digital Commons @ West Chester University](https://digitalcommons.wcupa.edu/)

[Mathematics Faculty Publications](https://digitalcommons.wcupa.edu/math_facpub) [Mathematics](https://digitalcommons.wcupa.edu/math) **Mathematics** Mathematics Mathematics

2007

Some properties of the distribution of the numbers of points on elliptic curves over a finite prime field

Saiying He Trinity College, Hartford Connecticut

James McLaughlin West Chester University of Pennsylvania, jmclaughlin2@wcupa.edu

Follow this and additional works at: [https://digitalcommons.wcupa.edu/math_facpub](https://digitalcommons.wcupa.edu/math_facpub?utm_source=digitalcommons.wcupa.edu%2Fmath_facpub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Number Theory Commons](http://network.bepress.com/hgg/discipline/183?utm_source=digitalcommons.wcupa.edu%2Fmath_facpub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

He, S., & McLaughlin, J. (2007). Some properties of the distribution of the numbers of points on elliptic curves over a finite prime field. Bulletin of the Australian Mathematics Society, 75(1), 135-149. Retrieved from [https://digitalcommons.wcupa.edu/math_facpub/58](https://digitalcommons.wcupa.edu/math_facpub/58?utm_source=digitalcommons.wcupa.edu%2Fmath_facpub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ West Chester University. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact [wcressler@wcupa.edu.](mailto:wcressler@wcupa.edu)

SOME ELEMENTARY PROPERTIES OF THE DISTRIBUTION OF THE NUMBERS OF POINTS ON ELLIPTIC CURVES OVER A FINITE PRIME FIELD

SAIYING HE AND J. MC LAUGHLIN

ABSTRACT. Let $p \geq 5$ be a prime and for $a, b \in \mathbb{F}_p$, let $E_{a,b}$ denote the elliptic curve over \mathbb{F}_p with equation $y^2 = x^3 + a x + b$. As usual define the trace of Frobenius $a_{p, a, b}$ by

$$
\#E_{a,b}(\mathbb{F}_p) = p + 1 - a_{p,a,b}.
$$

We use elementary facts about exponential sums and known results about binary quadratic forms over finite fields to evaluate the sums $\sum_{t \in \mathbb{F}_p} a_{p,t,b}, \sum_{t \in \mathbb{F}_p} a_{p,a,t}, \sum_{t=0}^{p-1} a_{p,t,b}^2, \sum_{t=0}^{p-1} a_{p,a,t}^2$ and $\sum_{t=0}^{p-1} a_{p,t,b}^3$ for primes p in various congruence classes.

As an example of our results, we prove the following: Let $p \equiv 5 \pmod{4}$ 6) be prime and let $b \in \mathbb{F}_p^*$. Then

$$
\sum_{t=0}^{p-1} a_{p,\,t,\,b}^3 = -p \left((p-2) \left(\frac{-2}{p} \right) + 2p \right) \left(\frac{b}{p} \right).
$$

1. INTRODUCTION

Let $p \geq 5$ be a prime and let \mathbb{F}_p be the finite field of p elements. For $a, b \in$ \mathbb{F}_p , let $E_{a,b}$ denote the elliptic curve over \mathbb{F}_p with equation $y^2 = x^3 + a x + b$. Denote by $E_{a,b}(\mathbb{F}_p)$ the set of \mathbb{F}_p – rational points on the curve $E_{a,b}$ and define the trace of Frobenius, a_p , by the equation

$$
\#E_{a,b}(\mathbb{F}_p) = p + 1 - a_p.
$$

A simple counting argument makes it clear that

(1.1)
$$
a_p = -\sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + a x + b}{p} \right),
$$

where $\left(\frac{1}{r}\right)$ $\frac{1}{p}$ denotes the Legendre symbol. We recall some of the arithmetic properties of the distribution of a_p . The following theorem is due to Hasse [4]:

Theorem 1. The integer a_p satisfies

$$
-2\sqrt{p} \le a_p \le 2\sqrt{p}.
$$

Date: August 13th, 2004.

¹⁹⁹¹ Mathematics Subject Classification. 11G20.

Key words and phrases. Elliptic Curves, Finite Fields.

Since we wish to look at how a_p varies as the coefficients a and b of the elliptic curve vary, it is convenient for our purposes to write a_p for the elliptic curve $E_{a,b}$ as $a_{p,a,b}$. The following result is well known (an easy consequence of the remarks on page 36 of [3], for example).

Proposition 1. Let the function $f : \mathbb{Z} \to \mathbb{N}_0$ be defined by setting

(1.2)
$$
f(k) = #\{(a, b) \in \mathbb{F}_p^* \times \mathbb{F}_p^* : a_{p, a, b} = k\}.
$$

Then for each integer k,

$$
\frac{p-1}{2}\bigg|f(k).
$$

The following result can be found in [2] (page 57).

Proposition 2. Define the function $f_1 : \mathbb{Z} \to \mathbb{N}_0$ by setting

(1.3)
$$
f_1(k) = \#\{(a,b) \in \mathbb{F}_p \times \mathbb{F}_p \setminus \{(0,0)\} : a_{p,a,b} = k\}.
$$

Then for each integer k,

$$
f_1(k) = f_1(-k).
$$

The following result is also known ([3], page 37, for example).

Proposition 3. Let v be a quadratic non-residue modulo p . Then

$$
a_{p,\,a,\,b} = -a_{p,\,v^2a,\,v^3b}.
$$

To better understand the distribution of the $a_{p, a, b}$ it makes sense to study the moments. The j-invariant of the elliptic curve $E_{a,b}$ is defined by

$$
j = \frac{2^8 3^3 a^3}{4a^3 + 27b^2},
$$

provided $4a^3 + 27b^2 \neq 0$. Michel showed in [7] that if $\{E_{a(t), b(t)} : t \in \mathbb{F}_p\}$ is a one-parameter family of elliptic curves with $a(t)$ and $b(t)$ polynomials in t such that

$$
j(t) := \frac{2^8 3^3 a(t)^3}{4a(t)^3 + 27b(t)^2},
$$

is non-constant, then

$$
\sum_{t \in \mathbb{F}_p} a_{p, a(t), b(t)}^2 = p^2 + O(p^{3/2}).
$$

In [2] Birch defined

$$
S_R(p) = \sum_{a, b=0}^{p-1} \left[\sum_{x=0}^{p-1} \left(\frac{x^3 - ax - b}{p} \right) \right]^{2R}
$$

for integral $R \geq 1$, and proved

Theorem 2. ¹ For $p \geq 5$,

$$
S_1(p) = (p - 1)p^2,
$$

\n
$$
S_2(p) = (p - 1)(2p^3 - 3p),
$$

\n
$$
S_3(p) = (p - 1)(5p^4 - 9p^2 - 5p),
$$

\n
$$
S_4(p) = (p - 1)(14p^5 - 28p^3 - 20p^2 - 7p),
$$

\n
$$
S_5(p) = (p - 1)(42p^6 - 90p^4 - 75p^3 - 35p^2 - 9p - \tau(p)),
$$

where $\tau(p)$ is Ramanujan's τ -function.

Theorem 2 evaluates sums of the form $\sum_{a,b=0}^{p-1} a_{p,a,b}^{2R}$ in terms of p and these results were derived by Birch as consequences of the Selberg trace formula .

In this present paper we instead use elementary facts about exponential sums and known results about binary quadratic forms over finite fields to evaluate the sums $\sum_{t \in \mathbb{F}_p} a_{p,t,b}, \sum_{t \in \mathbb{F}_p} a_{p,a,t}, \sum_{t=0}^{p-1} a_{p,t,b}^2, \sum_{t=0}^{p-1} a_{p,a,t}^2$ and $\sum_{t=0}^{p-1} a_{p,t,b}^3$, for primes p in particular congruence classes. In particular, we prove the following theorems.

Theorem 3. Let $p \geq 5$ be a prime, and $a, b \in \mathbb{F}_p$. Then (i) $\sum_{t \in \mathbb{F}_p} a_{p,t,b} = -p \left(\frac{b}{p} \right)$ $\frac{b}{p}\biggr),$ $(ii)\sum_{t\in\mathbb{F}_p}a_{p,a,t}=0.$

This result is elementary but we prove it for the sake of completeness.

Theorem 4. Let $p \equiv 5 \pmod{6}$ be prime and let $b \in \mathbb{F}_p^*$. Then

(1.4)
$$
\sum_{t=0}^{p-1} a_{p,t,b}^2 = p \left(p - 1 - \left(\frac{-1}{p} \right) \right).
$$

Theorem 5. Let $p \geq 5$ be prime and let $a \in \mathbb{F}_p^*$. Then

(1.5)
$$
\sum_{t=0}^{p-1} a_{p,a,t}^2 = p \left(p - 1 - \left(\frac{-3}{p} \right) - \left(\frac{-3a}{p} \right) \right).
$$

Theorem 4 and Theorem 5 could be deduced from Theorem 2, but we believe it is of interest to give elementary proofs that do not use the Selberg trace formula.

Theorem 6. Let $p \equiv 5 \pmod{6}$ be prime and let $b \in \mathbb{F}_p^*$. Then

$$
\sum_{t=0}^{p-1} a_{p,\,t,\,b}^3 = -p\left((p-2)\left(\frac{-2}{p}\right)+2p\right)\left(\frac{b}{p}\right).
$$

¹In [2], Birch incorrectly omitted the factor of $p-1$ in his statement of Theorem 2.

2. Proof of the Theorems

We introduce some standard notation. Define $e(j/p) := \exp(2\pi i j/p)$, so that

(2.1)
$$
\sum_{t=0}^{p-1} e\left(\frac{jt}{p}\right) = \begin{cases} p, & p \mid j, \\ 0, & (j, p) = 1. \end{cases}
$$

Define

(2.2)
$$
G_p = \begin{cases} \sqrt{p}, & p \equiv 1 \pmod{4}, \\ i\sqrt{p}, & p \equiv 3 \pmod{4}. \end{cases}
$$

Lemma 1. Let $\left(\frac{1}{n}\right)$ $\frac{1}{p}$ denote the Legendre symbol, modulo p. Then

(2.3)
$$
\left(\frac{z}{p}\right) = \frac{1}{G_P} \sum_{d=1}^{p-1} \left(\frac{d}{p}\right) e\left(\frac{dz}{p}\right).
$$

Proof. See [1], Theorem 1.1.5 and Theorem 1.5.2. \Box

We will occasionally use the fact that if $\mathbb H$ is a subset of $\mathbb F_p$,

(2.4)
$$
\sum_{d \in \mathbb{F}_p \backslash \mathbb{H}} \left(\frac{d}{p}\right) = -\sum_{d \in \mathbb{H}} \left(\frac{d}{p}\right).
$$

We will also occasionally make use of some implications of the Law of Quadratic Reciprocity (see [5], page 53, for example).

Theorem 7. Let *p* and *q* be odd primes. Then
\n
$$
(a) \left(\frac{-1}{p} \right) = (-1)^{(p-1)/2}.
$$

\n $(b) \left(\frac{2}{p} \right) = (-1)^{(p^2-1)/8}.$
\n $(c) \left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{((p-1)/2)((q-1)/2)}.$

We now prove Theorems 3, 4, 5 and 6,

Theorem 3. Let $p \geq 5$ be a prime, and $a, b \in \mathbb{F}_p$. Then

(i) $\sum_{t \in \mathbb{F}_p} a_{p,t,b} = -p \left(\frac{b}{p} \right)$ $\frac{b}{p}$,

(*ii*) $\sum_{t \in \mathbb{F}_p} a_{p,a,t} = 0.$

Proof. (i) From (1.1) and (2.3) , it follows that

$$
\sum_{t \in \mathbb{F}_p} a_{p,t,b} = -\sum_{x \in \mathbb{F}_p} \sum_{d=1}^{p-1} \frac{1}{G_P} \left(\frac{d}{p}\right) e\left(\frac{d(x^3+b)}{p}\right) \sum_{t \in \mathbb{F}_p} e\left(\frac{tdx}{p}\right)
$$

The inner sum over t is zero unless $x = 0$, in which case it equals to p. The left side therefore can be simplified to give

$$
\sum_{t \in \mathbb{F}_p} a_{p,t,b} = -\sum_{d=1}^{p-1} \frac{p}{G_P} \left(\frac{d}{p}\right) e\left(\frac{db}{p}\right) = -p\left(\frac{b}{p}\right).
$$

The last equality follows from (2.3).

(ii): From (1.1) and (2.3) , it follows that

$$
\sum_{t \in \mathbb{F}_p} a_{p,a,t} = -\sum_{x \in \mathbb{F}_p} \sum_{d=1}^{p-1} \frac{1}{G_p} \left(\frac{d}{p}\right) e\left(\frac{d(x^3 + ax)}{p}\right) \sum_{t \in \mathbb{F}_p} e\left(\frac{dt}{p}\right) = 0.
$$

The inner sum over t is equal to 0, by (2.1), since $1 \le d \le p - 1$.

 \Box

The result at (ii) follows also, in the case of primes $p \equiv 3 \pmod{4}$, from the fact that $a_{p,a,t} = -a_{p,a,p-t}$. However, this is not the case for primes $p \equiv 1$ (mod 4). For example,

$$
\{a_{13,1,t}: 0 \le t \le 12\} = \{-6, -4, 2, -1, 0, 5, 1, 1, 5, 0, -1, 2, -4\}.
$$

The results in Theorem 3 are almost certainly known, although we have not been able to find a reference.

Theorem 4. Let $p \equiv 5 \pmod{6}$ be prime and let $b \in \mathbb{F}_p^*$. Then

$$
\sum_{t=0}^{p-1} a_{p, t, b}^2 = p \left(p - 1 - \left(\frac{-1}{p} \right) \right).
$$

Proof. From (1.1) and (2.3) it follows that

$$
\sum_{t \in \mathbb{F}_p} a_{p,t,b}^2 = \frac{1}{G_p^2} \sum_{d_1, d_2=1}^{p-1} \left(\frac{d_1 d_2}{p} \right) \sum_{x_1, x_2 \in \mathbb{F}_p} e \left(\frac{d_1(x_1^3 + b) + d_2(x_2^3 + b)}{p} \right) \times \sum_{t \in \mathbb{F}_p} e \left(\frac{t(d_1 x_1 + d_2 x_2)}{p} \right).
$$

The inner sum over t is zero, unless $x_1 \equiv -d_1^{-1}d_2x_2 \pmod{p}$, in which case it equals p. Thus

$$
\sum_{t \in \mathbb{F}_p} a_{p,t,b}^2 = \frac{p}{G_p^2} \sum_{d_1, d_2=1}^{p-1} \left(\frac{d_1 d_2}{p}\right) e\left(\frac{b(d_1 + d_2)}{p}\right) \sum_{x_2 \in \mathbb{F}_p} e\left(\frac{d_1^{-2} d_2 x_2^3 (d_1^2 - d_2^2)}{p}\right).
$$

Since the map $x \to x^3$ is one-to-one on F_p , when $p \equiv 5 \pmod{6}$, the x_2^3 in the inner sum can be replaced by x_2 . Thus the inner sum is zero unless $d_2^2 - d_1^2 \equiv 0 \pmod{p}$, in which case it equals p. It follows that

$$
\sum_{t \in \mathbb{F}_p} a_{p,t,b}^2 = \frac{p^2}{G_p^2} \left(\sum_{d_1=1}^{p-1} \left(\frac{d_1^2}{p} \right) e\left(\frac{b(2d_1)}{p} \right) + \sum_{d_1=1}^{p-1} \left(\frac{-d_1^2}{p} \right) e\left(\frac{b(d_1 - d_1)}{p} \right) \right)
$$

=
$$
\frac{p^2}{G_p^2} \left(-1 + \left(\frac{-1}{p} \right) (p-1) \right) = \frac{p^2}{G_p^2} \left(\frac{-1}{p} \right) \left(p - 1 - \left(\frac{-1}{p} \right) \right).
$$

We have once again used (2.3) to compute the sums, noting that the sums above start with $d_1 = 1$. The result now follows since $p/G_p^2 \times (-1|p) = 1$ for all primes $p \geq 3$.

 \Box

Remarks: (1) It is clear that the results will remain true if $a(t) = t$ is replaced by any function $a(t)$ which is one-to-one on F_p .

(2) It is more difficult to determine the values taken by $\sum_{t\in\mathbb{F}_p}a_{p,t,b}^2$ for primes $p \equiv 1 \pmod{6}$. This is principally because the map $x \to x^3$ is not one-to-one on F_p for these primes (so that (2.1) cannot be used so easily to simplify the summation), but also because the answer depends on which coset *b* belongs to in $\mathbb{F}_p^*/\mathbb{F}_p^{*3}$.

Before proving the next theorem, it is necessary to recall a result about quadratic forms over finite fields. Let q be a power of an odd prime and let η denote the quadratic character on \mathbb{F}_q^* (so that if $q = p$, an odd prime, then $\eta(c) = (c/p)$, the Legendre symbol). The function v is defined on \mathbb{F}_q by

(2.5)
$$
v(b) = \begin{cases} -1, & b \in \mathbb{F}_q^*, \\ q-1, & b = 0. \end{cases}
$$

Suppose

$$
f(x_1,...,x_n) = \sum_{i,j=1}^n a_{ij}x_ix_j
$$
, with $a_{ij} = a_{ji}$,

is a quadratic form over \mathbb{F}_q , with associated matrix $A = (a_{ij})$ and let Δ denote the determinant of A (f is non-degenerate if $\Delta \neq 0$).

Theorem 8. Let f be a non-degenerate quadratic form over \mathbb{F}_q , q odd, in an even number n of indeterminates. Then for $b \in \mathbb{F}_q$ the number of solutions of the equation $f(x_1, \ldots, x_n) = b$ in \mathbb{F}_q^n is

(2.6)
$$
q^{n-1} + v(b)q^{(n-2)/2}\eta\left((-1)^{n/2}\triangle\right).
$$

Proof. See [6], pp 282–293.

Theorem 5. Let $p \geq 5$ be prime and let $a \in \mathbb{F}_p^*$. Then

$$
\sum_{t=0}^{p-1} a_{p,a,t}^2 = p \left(p - 1 - \left(\frac{-3}{p} \right) - \left(\frac{-3a}{p} \right) \right).
$$

Proof. Once again (1.1) and (2.3) give that

$$
\sum_{t \in \mathbb{F}_p} a_{p,a,t}^2 = \frac{1}{G_p^2} \sum_{d_1, d_2=1}^{p-1} \left(\frac{d_1 d_2}{p} \right) \sum_{x_1, x_2 \in \mathbb{F}_p} e\left(\frac{d_1(x_1^3 + ax_1) + d_2(x_2^3 + ax_2)}{p} \right) \times \sum_{t \in \mathbb{F}_p} e\left(\frac{t b(d_1 + d_2)}{p} \right).
$$

The inner sum over t is zero, unless $d_1 \equiv -d_2 \pmod{p}$, in which case it equals p. Thus

$$
(2.7) \quad \sum_{t \in \mathbb{F}_p} a_{p,a,t}^2 = \frac{p}{G_p^2} \left(\frac{-1}{p}\right) \sum_{x_1, x_2 \in \mathbb{F}_p} \sum_{d_1=1}^{p-1} e\left(\frac{d_1(x_1^3 + ax_1 - x_2^3 - ax_2)}{p}\right)
$$

$$
= \sum_{x_1, x_2 \in \mathbb{F}_p} \sum_{d_1=1}^{p-1} e\left(\frac{d_1(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + a)}{p}\right).
$$

We have used the fact that $p/G_p^2 \times (-1|p) = 1$ for all primes $p \geq 3$. The inner sum over d_1 equals -1 , unless one of the factors $x_1 - x_2$, $x_1^2 + x_1x_2 + x_2^2 + a$ equals 0, in which case the sum is $p-1$. The equation $x_1 = x_2$ has p solutions and, by (2.6) with $q = p, n = 2, f(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ and $A = \begin{pmatrix} 1 & (p+1)/2 \\ (p+1)/2 & 1 \end{pmatrix}$, the equation $x_1^2 + x_1x_2 + x_2^2 = -a$ has

$$
p + (-1)\left(\frac{-1(1 - (p+1)^2/4)}{p}\right) = p - \left(\frac{-3}{p}\right)
$$

solutions. However, we need to be careful to avoid double counting and to examine when $x_1^2 + x_1x_2 + x_2^2 = -a$ has a solution with $x_1 = x_2$. The equation $3x_1^2 = -a$ will have two solutions if $\left(\frac{-3a}{p}\right)$ $\left(\frac{-3a}{p}\right)$ = 1 and none if $\left(\frac{-3a}{p}\right)$ $\frac{3a}{p}$ = -1. Hence the number of solutions to the equation $3x_1^2 = -a$ is $\left(\frac{-3a}{p}\right)$ $\left(\frac{3a}{p}\right) + 1$. Thus the number of solutions to $(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + a) = 0$ is

$$
p + \left(p - \left(\frac{-3}{p}\right)\right) - \left(\left(\frac{-3a}{p}\right) + 1\right) = 2p - 1 - \left(\frac{-3}{p}\right) - \left(\frac{-3a}{p}\right).
$$

Thus

$$
\sum_{t \in \mathbb{F}_p} a_{p,a,t}^2 = \left(2p - 1 - \left(\frac{-3}{p}\right) - \left(\frac{-3a}{p}\right)\right)(p-1) + \left(p^2 - \left(2p - 1 - \left(\frac{-3}{p}\right) - \left(\frac{-3a}{p}\right)\right)\right)(-1).
$$

The right side now simplifies to give the result.

 \Box

Before proving Theorem 6, we need some preliminary lemmas.

Lemma 2. Let $p \equiv 5 \pmod{6}$ be prime. Then

$$
(2.8) \sum_{d,e,f=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y,z \in \mathbb{F}_p} e\left(\frac{d(-(ey+fz)^3+ey^3+fz^3)}{p} \right)
$$

= $-p(p-1)\left(1+\left(\frac{-1}{p}\right)\right)$

$$
+\sum_{d,e,f=1}^{p-1}\left(\frac{e+ef+f}{p}\right)\sum_{y,z\in\mathbb{F}_p}e\left(\frac{dfz(-f^2(y+1)^3+e^2y^3+1)}{p}\right).
$$

Proof. If $z = 0$, the left side of (2.8) becomes

$$
S_0 := \sum_{d,e,f=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y \in \mathbb{F}_p} e\left(\frac{dy^3e(1-e^2)}{p} \right)
$$

= $(p-1) \sum_{e,f=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y \in \mathbb{F}_p} e\left(\frac{ye(1-e^2)}{p} \right)$
= $p(p-1) \left(\sum_{f=1}^{p-1} \left(\frac{f(2+f)}{p} \right) + \sum_{f=1}^{p-1} \left(\frac{-f^2}{p} \right) \right)$
= $p(p-1) \left(\sum_{f=1}^{p-1} \left(\frac{2f^{-1}+1}{p} \right) + \sum_{f=1}^{p-1} \left(\frac{-1}{p} \right) \right)$
= $p(p-1) \left(-1 + (p-1) \left(\frac{-1}{p} \right) \right).$

The second equality follows since $\{y^3 : y \in \mathbb{F}_p\} = \{y : y \in \mathbb{F}_p\}$ for the primes p being considered, the third equality follows from (2.1) and the last equality follows from (2.4).

If $z \neq 0$, then the left side of (2.8) equals

$$
(2.9)
$$

$$
S_1 := \sum_{d,e,f,z=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y \in \mathbb{F}_p} e\left(\frac{d(-(ey+fz)^3+ey^3+fz^3)}{p} \right) =
$$

$$
\sum_{d,e,f,z=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y \in \mathbb{F}_p} e\left(\frac{dz^3(-(eyz^{-1}+f)^3+e(yz^{-1})^3+f)}{p} \right).
$$

Now replace y by yz and then z^3 by z (justified by the same argument as above) and finally e by ef to get this last sum equals

$$
\sum_{d,e,f,z=1}^{p-1} \left(\frac{e(1+ef+f)}{p} \right) \times \sum_{y \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(ey+1)^3 + ey^3 + 1)}{p} \right).
$$

We wish to extend the last sum to include $z = 0$. If we set $z = 0$ on the right side of the last equation (and denote the resulting sum by "r.s.") and sum over d and y we get that

$$
r.s. = p(p-1) \sum_{e,f=1}^{p-1} \left(\frac{e(1+f(e+1))}{p} \right)
$$

$$
= p(p-1) \left(\sum_{f=1}^{p-1} \left(\frac{-1}{p} \right) + \sum_{e=1}^{p-2} \sum_{f=1}^{p-1} \left(\frac{e(1+f(e+1))}{p} \right) \right).
$$

Replace f by $f(e+1)^{-1}$ in the second sum above and then

$$
r.s. = p(p-1) \left((p-1) \left(\frac{-1}{p} \right) + \sum_{e=1}^{p-2} \sum_{f=1}^{p-1} \left(\frac{e(1+f)}{p} \right) \right)
$$

= $p(p-1) \left((p-1) \left(\frac{-1}{p} \right) + \sum_{e=1}^{p-2} \left(\frac{e}{p} \right) \sum_{f=1}^{p-1} \left(\frac{1+f}{p} \right) \right)$
= $p(p-1) \left((p-1) \left(\frac{-1}{p} \right) + \left(-\left(\frac{-1}{p} \right) \right) (-1) \right)$
= $p^2(p-1) \left(\frac{-1}{p} \right).$

It follows that the left side of (2.9) equals

$$
\begin{aligned} &-p^2(p-1)\left(\frac{-1}{p}\right)\\ &+\sum_{d,e,f=1}^{p-1}\left(\frac{e(1+ef+f)}{p}\right)\sum_{y,z\in \mathbb{F}_p}e\left(\frac{dfz(-f^2(ey+1)^3+ey^3+1)}{p}\right), \end{aligned}
$$

and thus that the left side of (2.8) equals

(2.10)
\n
$$
S_0 + S_1 = -p(p-1) \left(1 + \left(\frac{-1}{p} \right) \right) + \sum_{d,e,f=1}^{p-1} \left(\frac{e(1+ef+f)}{p} \right)
$$
\n
$$
\times \sum_{y,z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(ey+1)^3 + ey^3 + 1)}{p} \right)
$$
\n
$$
= -p(p-1) \left(1 + \left(\frac{-1}{p} \right) \right) + \sum_{d,e,f=1}^{p-1} \left(\frac{e+ef+f}{p} \right)
$$
\n
$$
\times \sum_{y,z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(y+1)^3 + e^2y^3 + 1)}{p} \right).
$$

The second equality in (2.10) follows upon replacing y by ye^{-1} and then e by e^{-1} . **Lemma 3.** Let $p \equiv 5 \pmod{6}$ be prime. Then (2.11)

$$
S^* := \sum_{d,e,f=1}^{p-1} \left(\frac{e+ef+f}{p} \right) \sum_{y,z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(y+1)^3 + e^2y^3 + 1)}{p} \right)
$$

= $2p(p-1) \left(-1 + (p-1) \left(\frac{-1}{p} \right) \right) - 3p(p-1) \left(\frac{-2}{p} \right) + p(p-1)S^{**},$

where

$$
S^{**}:=\sum_{e,\,f=2,\;e^2\neq f^2}^{p-2}\left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p}\right).
$$

Proof. Upon changing the order of summation slightly, we get that

$$
S^* = \sum_{e,f=1}^{p-1} \left(\frac{e+ef+f}{p} \right) \sum_{d=1}^{p-1} \sum_{y,z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(y+1)^3 + e^2y^3 + 1)}{p} \right)
$$

If $y = 0$, the inner double sum over d and z is zero, unless $f = \pm 1$, if which case it equals $p(p-1)$ and the right side of (2.11) equals

$$
p(p-1)\left(\sum_{e=1}^{p-1} \left(\frac{2e+1}{p}\right) + \sum_{e=1}^{p-1} \left(\frac{-1}{p}\right)\right) = p(p-1)\left(-1 + (p-1)\left(\frac{-1}{p}\right)\right).
$$

By similar reasoning, if $y = -1$, the right side of (2.11) also equals

$$
p(p-1)\left(-1+(p-1)\left(\frac{-1}{p}\right)\right).
$$

Thus (2.12)

$$
S^* = 2p(p-1)\left(-1 + (p-1)\left(\frac{-1}{p}\right)\right)
$$

+
$$
\sum_{y=1}^{p-2} \sum_{e,f=1}^{p-1} \left(\frac{e+ef+f}{p}\right) \sum_{d=1}^{p-1} \sum_{z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(y+1)^3 + e^2y^3 + 1)}{p}\right)
$$

=
$$
2p(p-1)\left(-1 + (p-1)\left(\frac{-1}{p}\right)\right) + \sum_{y=1}^{p-2} \left(\frac{y(y+1)}{p}\right)
$$

$$
\times \sum_{e,f=1}^{p-1} \left(\frac{(e+f)y+e(1+f)}{p}\right) \sum_{d=1}^{p-1} \sum_{z \in \mathbb{F}_p} e\left(\frac{dfz((e^2-f^2)y+1-f^2)}{p}\right),
$$

where the last equality follows upon replacing f by $f(y + 1)^{-1}$ and e by ey^{-1} . The inner sum over d and z is zero unless

$$
(e2 - f2)y + 1 - f2 = 0,
$$

in which case the inner sum is $p(p-1)$. We distinguish the cases $e^2 = f^2$ and $e^2 \neq f^2$. If $e^2 = f^2$, then necessarily $e^2 = f^2 = 1$ and the sum on the right side of (2.12) becomes

(2.13)
\n
$$
p(p-1)\sum_{y=1}^{p-2} \left(\frac{y(y+1)}{p}\right) \left(\left(\frac{2(y+1)}{p}\right) + \left(\frac{0}{p}\right) + \left(\frac{-2}{p}\right) + \left(\frac{-2y}{p}\right)\right) = -3p(p-1)\left(\frac{-2}{p}\right).
$$

If $e^2 \neq f^2$ then

$$
y = \frac{f^2 - 1}{e^2 - f^2},
$$

and since $y \neq 0, -1$, we exclude $f^2 = 1$ and $e^2 = 1$. After substituting for y in the sum in the final expression in (2.12), we find that (2.14)

$$
S^* = 2p(p-1)\left(-1 + (p-1)\left(\frac{-1}{p}\right)\right) - 3p(p-1)\left(\frac{-2}{p}\right) + p(p-1)S^{**},
$$

where

(2.15)
$$
S^{**} := \sum_{e,f=2, e^2 \neq f^2}^{p-2} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right).
$$

Lemma 4. Let $p \equiv 5 \pmod{6}$ be prime and let S^{**} be as defined in Lemma 3. Then

$$
S^{**} = \sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right) + 2\left(\frac{-6}{p}\right) + 3\left(\frac{-2}{p}\right) + 3\left(\frac{-1}{p}\right) + 2.
$$

Proof. Clearly we can remove the restrictions $f \neq e$, $f \neq 1$ and $e \neq -1$ freely. If we set $f = -e$, we have that

$$
\sum_{e,f=2, e=-f}^{p-2} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right) = \sum_{e=2}^{p-2} \left(\frac{-2e(1+2e)}{p} \right)
$$

$$
= -\left(\left(\frac{-6}{p} \right) + \left(\frac{-2}{p} \right) + \left(\frac{-1}{p} \right) \right).
$$

The last equality follows from (2.4). Thus

$$
S^{**} = \sum_{e,f=2}^{p-2} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right)
$$

 \Box

$$
+\left(\frac{-6}{p}\right)+\left(\frac{-2}{p}\right)+\left(\frac{-1}{p}\right).
$$

If f is set equal to 0 in the sum above we get

$$
\sum_{e=2}^{p-2} \left(\frac{-e}{p} \right) = -1 - \left(\frac{-1}{p} \right).
$$

If f is set equal to -1 in this sum we get

$$
\sum_{e=2}^{p-2} \left(\frac{-2(2+e)}{p} \right) = -\left(\left(\frac{-4}{p} \right) + \left(\frac{-2}{p} \right) + \left(\frac{-6}{p} \right) \right)
$$

= -\left(\left(\frac{-1}{p} \right) + \left(\frac{-2}{p} \right) + \left(\frac{-6}{p} \right) \right).

Thus

$$
S^{**} = \sum_{e=2}^{p-2} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right) + 2\left(\left(\frac{-6}{p}\right) + \left(\frac{-2}{p}\right) + \left(\frac{-1}{p}\right) \right) + 1 + \left(\frac{-1}{p}\right).
$$

If we set $e = 0$ in this latest sum we get

$$
\sum_{f=0}^{p-1} \left(\frac{-f(1-f)(-1+f)}{p} \right) = \sum_{f=0, f \neq 1}^{p-1} \left(\frac{f}{p} \right) = -1.
$$

If we set $e = 1$ in this sum we get

$$
\sum_{f=0}^{p-1} \left(\frac{2(1-f)(2-f)(-1+f)}{p} \right) = \sum_{f=0,f\neq 1}^{p-1} \left(\frac{-2(2-f)}{p} \right) = -\left(\frac{-2}{p} \right).
$$

Thus

$$
S^{**} = \sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right) + 2\left(\frac{-6}{p}\right) + 3\left(\frac{-2}{p}\right) + 3\left(\frac{-1}{p}\right) + 2.
$$

Lemma 5. Let $p \equiv 5 \pmod{6}$ be prime. Then

$$
\sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right) = p\left(\frac{2}{p}\right) + 1.
$$

Proof. If f is replaced by $f + 1$ and then e is replaced by $e + f$, the value of the double sum above does not change. Thus

(2.16)
$$
\sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f)(1+e-f)(-1+f)}{p} \right)
$$

$$
= \sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e)(e-f-1)(e-f)f}{p} \right)
$$

$$
= \sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{(1+e+f)(e-1)e f}{p} \right)
$$

$$
= \sum_{e=0}^{p-1} \sum_{f=0}^{p-1} \left(\frac{e(e-1)}{p} \right) \sum_{f=0}^{p-1} \left(\frac{(1+e+f)f}{p} \right)
$$

We evaluate the inner sum using (2.3) .

$$
\sum_{f=0}^{p-1} \left(\frac{(1+e+f)f}{p} \right) = \frac{1}{G_p^2} \sum_{f=0}^{p-1} \sum_{d_1, d_2=1}^{p-1} \left(\frac{d_1 d_2}{p} \right) e \left(\frac{d_1 f + d_2 (1+e+f)}{p} \right)
$$

$$
= \frac{1}{G_p^2} \sum_{d_1, d_2=1}^{p-1} \left(\frac{d_1 d_2}{p} \right) e \left(\frac{d_2 (1+e)}{p} \right) \sum_{f=0}^{p-1} e \left(\frac{f(d_1+d_2)}{p} \right)
$$

$$
= \frac{p}{G_p^2} \sum_{d_2=1}^{p-1} \left(\frac{-1}{p} \right) e \left(\frac{d_2 (1+e)}{p} \right)
$$

$$
= \frac{p}{G_p^2} \left(\frac{-1}{p} \right) \sum_{d_2=1}^{p-1} e \left(\frac{d_2 (1+e)}{p} \right).
$$

The next-to-last equality follows since the sum over f in the previous expression is 0, unless $d_1 = -d_2$, in which case this sum is p. The sum over d_2 equals $p - 1$ if $e = p - 1$ and equals -1 otherwise. Hence the sum at (2.16) equals

$$
\frac{p}{G_p^2} \left(\frac{-1}{p}\right) \left(\sum_{e=0}^{p-2} \left(\frac{e(e-1)}{p}\right)(-1) + (p-1)\left(\frac{2}{p}\right)\right)
$$

$$
= \frac{p}{G_p^2} \left(\frac{-1}{p}\right) \left(\left(\frac{2}{p}\right) + 1 + (p-1)\left(\frac{2}{p}\right)\right)
$$

$$
= \frac{p}{G_p^2} \left(\frac{-1}{p}\right) \left(p\left(\frac{2}{p}\right) + 1\right) = p\left(\frac{2}{p}\right) + 1,
$$

the last equality following from the remark after (2.7) .

.

Corollary 1. Let S^* and S^{**} be as defined in Lemma 3. Then

(i)
$$
S^{**} = (p-2) \left(\frac{2}{p}\right) + 3 \left(\frac{-2}{p}\right) + 3 \left(\frac{-1}{p}\right) + 3,
$$

\n(ii) $S^* = p(p-1) \left(1 + (2p+1) \left(\frac{-1}{p}\right) + (p-2) \left(\frac{2}{p}\right)\right).$

Proof. Lemmas 4 and 5 and the fact that $(-3|p) = -1$ if $p \equiv 5 \pmod{6}$ give (i). Lemma 3 and part (i) give (ii). \Box

Theorem 6. Let $p \equiv 5 \pmod{6}$ be prime and let $b \in \mathbb{F}_p^*$. Then

(2.17)
$$
\sum_{t=0}^{p-1} a_{p,t,b}^3 = -p \left((p-2) \left(\frac{-2}{p} \right) + 2p \right) \left(\frac{b}{p} \right).
$$

Proof. Let g be a generator of \mathbb{F}_p^* . It is a simple matter to show, using (1.1), that

$$
\sum_{t=0}^{p-1} a_{p,t,b}^3 = -\sum_{t=0}^{p-1} a_{p,t,bg}^3.
$$

Thus the statement at (2.17) is equivalent to the statement

(2.18)
$$
\sum_{b=1}^{p-1} \sum_{t=0}^{p-1} a_{p,t,b}^3 \left(\frac{b}{p}\right) = -p(p-1)\left((p-2)\left(\frac{-2}{p}\right)+2p\right).
$$

Let S denote the left side of (2.18) . From (1.1) and (2.3) it follows that

$$
S = -\sum_{b=1}^{p-1} \sum_{t=0}^{p-1} \sum_{x,y,z \in \mathbb{F}_p} \left(\frac{x^3 + tx + b}{p} \right) \left(\frac{y^3 + ty + b}{p} \right) \left(\frac{z^3 + tz + b}{p} \right) \left(\frac{b}{p} \right)
$$

\n
$$
= -\frac{1}{G_p^3} \sum_{d,e,f=1}^{p-1} \left(\frac{def}{p} \right) \sum_{x,y,z,t \in \mathbb{F}_p} e \left(\frac{d(x^3 + tx) + e(y^3 + ty) + f(z^3 + tz)}{p} \right)
$$

\n
$$
\times \sum_{b \in \mathbb{F}_p^*} \left(\frac{b}{p} \right) e \left(\frac{b(d+e+f)}{p} \right)
$$

\n
$$
= -\frac{1}{G_p^2} \sum_{d,e,f=1}^{p-1} \left(\frac{def}{p} \right) \left(\frac{d+e+f}{p} \right)
$$

\n
$$
\times \sum_{x,y,z,t \in \mathbb{F}_p} e \left(\frac{d(x^3 + tx) + e(y^3 + ty) + f(z^3 + tz)}{p} \right)
$$

$$
= -\frac{1}{G_p^2} \sum_{d,e,f=1}^{p-1} \left(\frac{def}{p}\right) \left(\frac{d+e+f}{p}\right) \sum_{x,y,z \in \mathbb{F}_p} e\left(\frac{dx^3 + ey^3 + fz^3}{p}\right) \times \sum_{t \in \mathbb{F}_p} e\left(\frac{t(dx+ey+fx)}{p}\right)
$$

The inner sum is zero, unless $dx + ey + fz = 0$ in \mathbb{F}_p , in which case it equals p. Upon letting $x = -d^{-1}(ey + fz)$, replacing e by de and f by fe, we get that

$$
S = -\frac{p}{G_p^2} \sum_{d,e,f=1}^{p-1} \left(\frac{ef(1+e+f)}{p} \right) \sum_{y,z \in \mathbb{F}_p} e\left(\frac{d(-(ey+fz)^3+ey^3+fz^3)}{p} \right)
$$

\n
$$
= \frac{p^2(p-1)}{G_p^2} \left(1 + \left(\frac{-1}{p} \right) \right)
$$

\n
$$
- \frac{p}{G_p^2} \sum_{d,e,f=1}^{p-1} \left(\frac{e+ef+f}{p} \right) \sum_{y,z \in \mathbb{F}_p} e\left(\frac{dfz(-f^2(y+1)^3+e^2y^3+1)}{p} \right)
$$

\n
$$
= \frac{p^2(p-1)}{G_p^2} \left(1 + \left(\frac{-1}{p} \right) \right) - \frac{p}{G_p^2} S^*
$$

\n
$$
= -\frac{p^2(p-1)}{G_p^2} \left(2p\left(\frac{-1}{p} \right) + (p-2)\left(\frac{2}{p} \right) \right)
$$

\n
$$
= -p(p-1) \left(2p + (p-2)\left(\frac{-2}{p} \right) \right),
$$

which was what needed to be shown, by (2.18) . The second equality above follows from Lemma 2. Above S^* is as defined in Lemma 3 and in the nextto-last equality we used Corollary 1, part (ii). In the last equality we used once again the fact that $p/G_p^2(-1|p) = 1$.

\Box

3. Concluding Remarks

Let $p \equiv 5 \pmod{6}$ be prime, $b \in \mathbb{F}_p^*$ and k be an odd positive integer. Define

$$
f_k(p) = \sum_{t=0}^{p-1} a_{p, t, b}^k \left(\frac{b}{p}\right).
$$

(It is not difficult to show that the right side is independent of $b \in \mathbb{F}_p^*$) By Theorem 6

$$
f_3(p) = -p\left((p-2)\left(\frac{-2}{p}\right) + 2p\right).
$$

We have not been able to determine $f_k(p)$ for $k \geq 5$ (We do not consider even k , since a formula for each even k can be derived from Birch's work in [2]). We conclude with a table of values of $f_k(p)$ and small primes $p \equiv 5$ (mod 6), with the hope of encouraging others to work on this problem.

REFERENCES

[1] Berndt, Bruce C.; Evans, Ronald J.; Williams, Kenneth S. Gauss and Jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. xii+583 pp.

λ \mathcal{D}	5	7	9	11
5	-275	-2315	-20195	-179195
11	-10901	-358061	-12030821	-411625181
17	-36737	-1582913	-68613377	-3016710593
23	8257	2763745	304822657	27903893665
29	-35699	-396299	184745341	35260018501
41	-654401	-88683041	-12260782721	-1716248660321

TABLE 1. $f_k(p)$ for small primes $p \equiv 5 \pmod{6}$ and small odd k.

- [2] Birch, B. J. How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc. 43 1968 57–60.
- [3] Blake, I. F.; Seroussi, G.; Smart, N. P. Elliptic curves in cryptography. Reprint of the 1999 original. London Mathematical Society Lecture Note Series, 265. Cambridge University Press, Cambridge, 2000. xvi+204 pp.
- [4] Hasse, H. Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen eliptischen Fällen. Vorläufige Mitteilung, Nachr. Ges. Wiss. Göttingen I, Math.-phys. Kl. Fachgr. I Math. Nr. 42 (1933), 253-262
- [5] Ireland, Kenneth; Rosen, Michael A classical introduction to modern number theory. Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990. $xiv+389$ pp.
- [6] Lidl, Rudolf; Niederreiter, Harald Finite fields. With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997. xiv+755 pp.
- [7] Michel, Philippe Rang moyen de familles de courbes elliptiques et lois de Sato-Tate. Monatsh. Math. 120 (1995), no. 2, 127–136.
- [8] Miller, Steven J. One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries. Compos. Math. 140 (2004), no. 4, 952–992

Trinity College, 300 Summit Street, Hartford, CT 06106-3100 E-mail address: Saiying.He@trincoll.edu

Mathematics Department, Trinity College, 300 Summit Street, Hartford, CT 06106-3100

E-mail address: james.mclaughlin@trincoll.edu