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CONTINUED FRACTIONS AND GENERALIZATIONS WITH MANY
LIMITS: A SURVEY.

DOUGLAS BOWMAN AND JAMES MC LAUGHLIN

Abstract. There are infinite processes (matrix products, continued fractions, (r, s)-matrix
continued fractions, recurrence sequences) which, under certain circumstances, do not con-
verge but instead diverge in a very predictable way.

We give a survey of results in this area, focusing on recent results of the authors.

1. Introduction

Consider the following recurrence:

xn+1 =
4

3
− 1

xn

.

Taking 1/∞ to be 0 and vice versa, then regardless of the initial (real) value of this sequence,
it is an interesting fact that the sequence is dense in R. The proof is illuminating.

Take x0 = 4/3 and view xn as n’th approximant of the continued fraction:

4/3− 1

4/3 −
1

4/3 −
1

4/3 −
1

4/3 − · · · . (1)

Then, from the standard theorem on the recurrence for convergents of a continued fraction,
the n’th numerator and denominator convergents of this continued fraction, An and Bn

respectively, must both satisfy the linear recurrence relation

Yn =
4

3
Yn−1 − Yn−2,

but with different initial conditions.
Now, the characteristic roots of this equation are α = 2/3 + i

√
5/3, and β = 2/3− i

√
5/3.

Thus from the usual formula for solving linear recurrences, the exact formula for xn is

xn =
An

Bn

=
aαn + bβn

cαn + dβn
=

aλn + b

cλn + d
,

where a, b, c, and d are some complex constants and λ = α/β. Notice that λ is a number
on the unit circle and is not a root of unity, so that λn is dense on the unit circle. The
conclusion follows by noting that the linear fractional transformation

z 7→ az + b

cz + d

must take the unit circle to R, since the values of the sequence xn are real.
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2 DOUGLAS BOWMAN AND JAMES MC LAUGHLIN

After seeing this argument, one is tempted to write down the amusing identity

R = 4/3− 1

4/3 −
1

4/3 −
1

4/3 −
1

4/3 − · · · .
This identity is true so long as one interprets the value of the continued fraction to be the
set of limits of subsequences of its sequence of approximants.

Another motivating example of our work is the following theorem, one of the oldest in the
analytic theory of continued fractions [6]:

Theorem 1.1. (Stern-Stolz) Let the sequence {bn} satisfy
∑ |bn| < ∞. Then

b0 + K∞
n=1

1

bn

diverges. In fact, for p = 0, 1,

lim
n→∞

P2n+p = Ap 6= ∞, lim
n→∞

Q2n+p = Bp 6= ∞,

and
A1B0 − A0B1 = 1.

The Stern-Stolz theorem gives a general class of continued fractions each of which tend to
two different limits, respectively A0/B0, and A1/B1. Here and throughout we assume the

limits for continued fractions are in Ĉ. This makes sense because continued fractions can be
viewed as the composition of linear fractional transformations and such functions have Ĉ as
their natural domain and codomain.

Before leaving the Stern-Stolz theorem, we wish to remark that although the theorem is
usually termed a “divergence theorem”, this terminology is a bit misleading; the theorem
actually shows that although the continued fractions of this form diverge, they do so by
tending to two limits in a precisely controlled way. In this paper we study extensions of
this phenomenon and investigate just how far one can go in this direction. Thus, although
throughout this paper we refer to certain of our results as “divergence” theorems, most of
them actually give explicit results about convergent subsequences.

A special case of the Stern-Stolz theorem gives a result on the famous Rogers-Ramanujan
continued fraction:

1 +
q

1 +

q2

1 +

q3

1 +

q4

1 · · · , (2)

The Stern-Stolz theorem gives that for |q| > 1 the even and odd approximants of this
continued fraction tend to two limiting functions. To see this, observe that by the standard
equivalence transformation for continued fractions, (2) is equal to

1 +
1

1/q +

1

1/q +

1

1/q2 +

1

1/q2 · · · +

1

1/qn +

1

1/qn · · · .
The Stern-Stolz theorem, however does not apply to the following continued fraction given

by Ramanujan:
−1

1 + q +

−1

1 + q2 +

−1

1 + q3 + · · · . (3)

Recently in [1] Andrews, Berndt, et al. proved a claim made by Ramanujan in his lost
notebook ([9], p.45) about (3). To describe Ramanujan’s claim, we first need some notation.
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Throughout take q ∈ C with |q| < 1. The following standard notation for q-products will
also be employed:

(a)0 := (a; q)0 := 1, (a)n := (a; q)n :=
n−1∏

k=0

(1− a qk), if n ≥ 1,

and

(a; q)∞ :=
∞∏

k=0

(1− a qk), |q| < 1.

Set ω = e2πi/3. Ramanujan’s claim was that, for |q| < 1,

lim
n→∞

(
1
1 −

1
1 + q −

1
1 + q2 − · · · −

1
1 + qn + a

)
= −ω2

(
Ω− ωn+1

Ω− ωn−1

)
.
(q2; q3)∞
(q; q3)∞

, (4)

where

Ω :=
1− aω2

1− aω

(ω2q, q)∞
(ωq, q)∞

.

Ramanujan’s notation is confusing, but what his claim means is that the limit exists as
n →∞ in each of the three congruence classes modulo 3, and that the limit is given by the
expression on the right side of (4). Also, the appearance of the variable a in this formula is
a bit of a red herring; from elementary properties of continued fractions, one can derive the
result for general a from the a = 0 case.

Now (1) is different from the other examples in that it has subsequences of approximants
tending to infinitely many limits. Nevertheless, all of the examples above, including (1), are
special cases of a general result on continued fractions (Theorem 4.1 below). To deal with
both of these situations we introduce the notion of the limit set of a sequence.

The limit set of the sequence is defined to be the set of all limits of convergent subsequences.
Limit sets should not be confused with sets of limit points. Thus, for example, the sequence
{1, 1, 1, . . . } has limit set {1} although the set of limit (accumulation) points of the set
of values of the sequence is empty. Limit sets need to be introduced so that sequences
with constant subsequences will have the values of these subsequences included among the
possible limits. Certain periodic continued fractions have this property. To avoid confusion
we designate the limit set of a sequence {sn}n≥1 by l.s.(sn).

Our initial research [2] dealt with cases in which the limit set was finite. In [3] we ex-
tended our methods to give a uniform treatment of finite and infinite cases. In fact, in [3],
we studied asymptotics for approximants for infinite matrix products, continued fractions,
and recurrence relations of Poincaré type. Limit set information easily follows from the
asymptotics.

In the papers [2] and [3], the authors studied limit sets in the specific context of sequences
of the form

f

(
n∏

i=1

Di

)
,

where Di is a sequence of complex matrices and f is a function with values in some compact
metric space.
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2. Definitions, Notation and Terminology

Limit set equalities in this paper arise from the situation

lim
n→∞

d(sn, tn) = 0

in some metric space (X, d). Accordingly, it makes sense to define the equivalence relation
∼ on sequences in X by {sn} ∼ {tn} ⇐⇒ limn→∞ d(sn, tn) = 0. In this situation we refer
to sequences {sn} and {tn} as being asymptotic to each other. Abusing notation, we often
write sn ∼ tn in place of {sn} ∼ {tn}. More generally, we frequently write sequences without
braces when it is clear from context that we are speaking of a sequence, and not the nth
term.

Let Md(C) denote the set of d× d matrices of complex numbers topologised using the l∞
norm, denoted by || · ||. Let I denote the identity matrix. When we use product notation
for matrices, the product is taken from left to right; thus

n∏
i=1

Ai := A1A2 · · ·An.

An infinite continued fraction

K∞
n=1

an

bn

:=
a1

b1 +

a2

b2 +

a3

b3 + · · · (5)

is said to converge if

lim
n→∞

a1

b1 +

a2

b2 +

a3

b3 + · · · +

an

bn

exists in Ĉ. Let {ωn} be a sequence of complex numbers. If

lim
n→∞

a1

b1 +

a2

b2 +

a3

b3 + · · · +

an

bn + ωn

exist, then this limit is called the modified limit of K∞
n=1an/bn with respect to the sequence

{ωn}. Detailed discussions of modified continued fractions as well as further pointers to the
literature are given in [6].

We follow the common convention in analysis of denoting the group of points on the unit
circle by T, or by T∞, and its subgroup of roots of unity of order m, m finite, by Tm. (Note:
T∞ often denotes the group of all roots of unity; here it denotes the whole circle group.)

3. Theorems of Infinite Matrix Products

The classic theorem on the convergence of infinite products of matrices seems first to have
been given clearly by Wedderburn [10].

Proposition 1. (Wedderburn [10, 11]) Let Ai ∈ Md(C) for i ≥ 1. Then
∑

i≥1 ||Ai|| < ∞
implies that

∏
i≥1(I + Ai) converges in Md(C).

In [2], our initial motivation was to generalize the Ramanujan continued fraction with
three limits (4) to a continued fraction with m limits, m ≥ 3. This led us to consider infinite
sequences of matrices converging to 2×2 matrices with eigenvalues which were distinct roots
of unity, and to examine the divergence of the corresponding infinite matrix product.

This in turn led us to consider the more general case of infinite sequences of p×p matrices,
p ≥ 2, with similar properties. In [2] we proved the following result.
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Proposition 2. Let p ≥ 2 be an integer and let M be a p× p matrix that is diagonalizable
and whose eigenvalues are roots of unity. Let I denote the p × p identity matrix and let m
be the least positive integer such that

Mm = I.

For a p× p matrix G, let
||G||∞ = max

1≤i,j≤p
|G(i,j)|,

where G(i,j) denotes the element of G in row i and column j. Suppose {Dn}∞n=1 is a sequence
of matrices such that

∞∑
n=1

||Dn −M ||∞ < ∞.

Then

F := lim
k→∞

km∏
n=1

Dn

exists. Here the matrix product means either D1D2 . . . or . . . D2D1. Further, for each j,
0 ≤ j ≤ m− 1,

lim
k→∞

km+j∏
n=1

Dn = M jF or FM j,

depending on whether the products are taken to the left or right.

A natural progression was to replace the matrix M in the proposition above with a se-
quence of matrices {Mi}. In [3] we proved the following result.

Theorem 1. Suppose {Mi} and {Di} are sequences of complex matrices such that the two
sequences (for ε = ±1) ∥∥∥∥∥

(
n∏

i=1

Mi

)ε∥∥∥∥∥ (6)

are bounded and ∑
i≥1

‖Di −Mi‖ < ∞. (7)

Then

F := lim
n→∞

(
n∏

i=1

Di

) (
n∏

i=1

Mi

)−1

(8)

exists and det(F ) 6= 0 if and only if det(Di) 6= 0 for all i ≥ 1.
As sequences

n∏
i=1

Di ∼ F

n∏
i=1

Mi. (9)

More generally, let f be a continuous function from the domain
{

F

n∏
i=1

Mi : n ≥ h

}
∪

⋃

n≥h

{
n∏

i=1

Di

}
,
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for some integer h ≥ 1, into a metric space G. Then the domain of f is compact in Md(C)
and f(

∏n
i=1 Di) ∼ f(F

∏n
i=1 Mi). Finally

l.s.

(
n∏

i=1

Di

)
= l.s.

(
F

n∏
i=1

Mi

)
, (10)

and

l.s.

(
f

(
n∏

i=1

Di

))
= l.s.

(
f

(
F

n∏
i=1

Mi

))
. (11)

Theorem 1 had several interesting applications to certain classes of continued fractions,
recurrence sequences, and (r, s)-matrix continued fractions.

4. Theorems on Continued Fractions

We begin by stating our general theorem on the asymptotics and limit sets of the sequence
of approximants of a class of continued fractions. The theorem shows that the limit set is a
circle (or a finite subset of a circle) on the Riemann sphere. When the limit set is a circle,
although the set of approximants approaches all of its points, the approximants usually do
not do so in a uniform way.

The following theorem concerns the continued fraction

−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn

α + β + pn

, (12)

where the sequences pn and qn are absolutely summable and the constants α 6= β are points
on the unit circle.

Theorem 4.1. Let {pn}n≥1, {qn}n≥1 be complex sequences satisfying
∞∑

n=1

|pn| < ∞,

∞∑
n=1

|qn| < ∞.

Let α and β satisfy |α| = |β| = 1, α 6= β with the order of λ = α/β in T being m (where m
may be infinite). Assume that qn 6= αβ for any n ≥ 1. Put

fn(w) :=
−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn

α + β + pn + w
,

so that fn := fn(0) is the sequence of approximants of the continued fraction (12). Then
fn ∼ h(λn+1) so that l.s. (fn) = h(Tm), where

h(z) =
az + b

cz + d
,

with the constants a, b, c, d ∈ C given by the (existent) limits

a = lim
n→∞

α−n(Pn − βPn−1), (13)

b = − lim
n→∞

β−n(Pn − αPn−1),

c = lim
n→∞

α−n(Qn − βQn−1),

d = − lim
n→∞

β−n(Qn − αQn−1),
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where Pn and Qn are the nth convergents of the continued fraction (12). Moreover,

det(h) = ad− bc = (β − α)
∞∏

n=1

(
1− qn

αβ

)
6= 0, (14)

and the following identities involving modified versions of (12) hold in Ĉ:

h(∞) =
a

c
(15)

= lim
n→∞

−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn−1

α + β + pn−1 +

−αβ + qn

α + pn

;

h(0) =
b

d
(16)

= lim
n→∞

−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn−1

α + β + pn−1 +

−αβ + qn

β + pn

;

and for k ∈ Z, we have

h(λk+1) =
aλk+1 + b

cλk+1 + d

= lim
n→∞

−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn

α + β + pn + ωn−k

, (17)

where

ωn = − αn − βn

αn−1 − βn−1
∈ Ĉ, n ∈ Z.

As a first application, we can get quite precise information about the divergence behavior
of limit-1 periodic continued fractions of elliptic type (see [6] for more on limit-1 periodic
continued fractions of elliptic type).

We consider the case where the continued fraction
a1

b1 +

a2

b2 +

a3

b3 + · · · (18)

is a limit 1-periodic continued fraction of elliptic type and, in addition,
∑
n≥1

|an − a| < ∞,
∑
n≥1

|bn − b| < ∞,

for some a, b ∈ C.
Set

d :=

∣∣∣∣∣
b +

√
b2 + 4a

2

∣∣∣∣∣ =

∣∣∣∣∣
b−√b2 + 4a

2

∣∣∣∣∣ ,

and define

α =
b +

√
b2 + 4a

2d
, β =

b−√b2 + 4a

2d
.

Then α 6= β, |α| = |β| = 1. Define, for n ≥ 1, pn and qn by

an = a + pn, bn = b + qn.
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Thus

K∞
n=1

a + qn

b + pn

= dK∞
n=1

−αβ + qn/d
2

α + β + pn/d
.

The second continued fraction satisfies the conditions of Theorem 4.1. Thus this theorem
can be applied to all limit 1-periodic continued fractions of elliptic type with limn→∞ an = a
and limn→∞ bn = b, providing

∑
n≥1 |an − a| < ∞ and

∑
n≥1 |bn − b| < ∞. Of course, it is

known that without any restrictions on how the limit periodic sequences tend to their limits,
the behavior can be quit complicated, see [6].

Next, we can obtain (up to a factor of ±1) the numbers a, b, c, and d in terms of the
modified continued fractions and the product for det(h) given in Theorem 4.1.

Corollary 4.2. The linear fractional transformation h(z) defined in Theorem 4.1 has the
following expression

h(z) =
A(C −B)z + B(A− C)

(C −B)z + A− C
,

where A = h(∞), B = h(0), and C = h(1). Moreover, the constants a, b, c, and d in the
theorem have the following formulas

a = sA(C −B), b = sB(A− C), c = s(C −B), d = s(A− C),

where

s = ±

√√√√ (β − α)
∏∞

n=1

(
1− qn

αβ

)

(A−B)(C − A)(B − C)
.

It is interesting that the linear fractional transformation which describes the limit set of
the divergent continued fraction

K∞
n=1

−αβ + qn

α + β + pn

can be described completely in terms of three convergent modified continued fractions.
Let T′ denote the image of T under h, that is, the limit set of the sequence {fn}. The

main conclusion of the theorem can be expressed by the statement

fn ∼ h(λn+1), (19)

where h is the linear fractional transformation in the theorem. It is well known that when
λ is not a root of unity, λn+1 is uniformly distributed on T. However, the linear fractional
transformation h stretches and compresses arcs of the circle T, so that the distribution of
h(λn+1) in arcs of T′ is no longer uniform. Thus, although the limit set in the case where λ
is not a root of unity is a circle, the concentration of approximants is not uniform around
the circle.

Fortunately, the distribution of approximants is completely controlled by the known pa-
rameters a, b, c, and d. The following corollary gives the points on the limit sets whose
neighborhood arcs have the greatest and least concentrations of approximants. (We do not
take the space here to give a precise definition of what this means; interested readers should
consult the author’s paper [3].)
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Corollary 4.3. When m = ∞ and cd 6= 0, the points on

aTm + b

cTm + d

with the highest and lowest concentrations of approximants are

a

c
|c|+ b

d
|d|

|c|+ |d| and
−a

c
|c|+ b

d
|d|

−|c|+ |d| ,

respectively. If either c = 0 or d = 0, then all points on the limit set have the same
concentration. The radius of the limit set circle in C is∣∣∣∣∣

α− β

|c|2 − |d|2
∞∏

n=1

(
1− qn

αβ

)∣∣∣∣∣ .

The limit set is a line in C if and only if |c| = |d|, and in this case the point of least
concentration is ∞.

Corollary 4.4. If the limit set of the continued fraction in (12) is a line in C, then the point
of highest concentration of approximants in the limit set is exactly

h(∞) + h(0)

2
,

the average of the first two modifications of (12) given in Theorem 4.1.

It is also possible to derive a convergent continued fractions which have the same limit as
the modified continued fractions in Theorem 4.1. These are given in the following corollary.

Corollary 4.5. Let α, β, {pn}, {qn}, h(z), be as in Theorem 4.1. Then

h(∞) = −β +
q1 + βp1

α + p1 +

(q1 − αβ)(q2 + βp2)

(α + p2)(q1 + βp1) + β(q2 + βp2)

+
K∞

n=3

(qn−1 − αβ)(qn + βpn)(qn−1 + βpn−1)

(α + pn)(qn−1 + βpn−1) + β(qn + βpn)
, (20)

h(0) = −α +
q1 + αp1

β + p1 +

(q1 − αβ)(q2 + αp2)

(β + p2)(q1 + αp1) + α(q2 + αp2)

+
K∞

n=3

(qn−1 − αβ)(qn + αpn)(qn−1 + αpn−1)

(β + pn)(qn−1 + αpn−1) + α(qn + αpn)
. (21)

Let k ∈ Z and assume that α/β is not a root of unity. Set

ωn = − αn−k − βn−k

αn−k−1 − βn−k−1
, for n ≥ k′ := max{3, k + 3}.

Then

h(λk+1) =
−αβ + q1

α + β + p1 + · · · +

−αβ + qk′−1

α + β + pk′−1 +

−αβ + qk′

α + β + pk′ + ωk′

+

−αβ + qk′+1 − ωk′(α + β + pk′+1 + ωk′+1)

α + β + pk′+1 + ωk′+1 +
K∞

n=k′+2

cn

dn

, (22)
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where

cn = (qn−1 − αβ)
−αβ + qn − ωn−1 (α + β + pn + ωn)

−αβ + qn−1 − ωn−2 (α + β + pn−1 + ωn−1)

dn = α + β + pn + ωn − ωn−2
−αβ + qn − ωn−1 (α + β + pn + ωn)

−αβ + qn−1 − ωn−2 (α + β + pn−1 + ωn−1)
.

Before continuing, we give an example which illustrates some of the results mentioned
above. Let |p|, |q| < 1, and define

G(p, q, α, β) :=
−αβ + q

α + β + p +

−αβ + q2

α + β + p2 + · · · +

−αβ + qn

α + β + pn + · · · .

For p = 0.3, q = 0.2, α = exp(ı
√

11),β = exp(ı
√

13), we use Corollary 4.5 with pn = pn,
qn = qn and k = −1 and compute the limits of the three continued fractions there to find

h(∞) = 1.13121 + 0.772998i,

h(0) = 1.20138 + 0.0347473i,

h(1) = −0.412160− 0.486753i.

We then apply Corollary 4.2 and compute

s = 2.97370 + 0.773678i,

a = 0.581867 + 0.408182i,

b = −0.670885− 0.294104i,

c = 0.518727 + 0.00637067i,

d = −0.565036− 0.228462i.

With

h(z) :=
az + b

cz + d
,

we now compare the predicted limit set h(T) with the sequence of approximants. Figure 1
shows the first 3000 approximants of G(0.3, 0.2, exp(ı

√
11), exp(ı

√
13)) and the circle h(T).

We see that the limit set is exactly what is predicted by Theorem 4.1. The large dots show
the points of highest (top) and lowest (bottom) points of concentration of approximants, as
predicted by Corollary 4.3, namely 1.16911+0.374194i and 1.60256− 4.18725i. We see that
prediction and mathematical fact agree in this case also.

We next consider an example where α/β is a root of unity, so that the limit set is finite.
We proceed as above to compute h(z) (details omitted). Figure 2 shows the first 3000
approximants of G(0.3, 0.2, exp(ı

√
11), exp(ı(

√
11 + 2π/17))) and its convergence to the 17

limit points, together with the circle h(T).
Figure 3 shows the image of all seventeen 17th roots of unity under h. Once again the

actual limit set and the predicted limit set agree perfectly.
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Figure 1. The convergence of G(0.3, 0.2, exp(ı
√

11), exp(ı
√

13)).

1 2 3

-3

-2

-1

Figure 2. The convergence of G(0.3, 0.2, exp(ı
√

11), exp(ı(
√

11 + 2π/17))).

Lastly, we consider the continued fraction from the beginning of the paper, K∞
n=1−1/(4/3).

If we follow the same kind of analysis as above, we find that

a = −2/3 +
√

5/3i,

b = 2/3 +
√

5/3i,

c = 1,

d = −1.

Corollary 4.4 predicts that the highest concentration of approximants occurs at (a/c +
b/d)/2 = −2/3. Figure 4 shows the distribution of the first 1200 approximants of the
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1 2 3

-3
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-1

Figure 3. The image of the seventeen 17th roots of unity under h.

continued fraction (about 100 extreme values were omitted), once again showing agreement
with the theory.

-4 -2 0 2 4

20

40

60

80

100

Figure 4. The distribution of the first 1200 approximants of K∞
n=1 − 1/(4/3).

4.1. An Infinite Family of Divergence Theorems. An interesting special case of The-
orem 4.1 occurs when α and β are distinct m-th roots of unity (m ≥ 2). In this situation
the continued fraction

−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 +

−αβ + q3

α + β + p3 +

−αβ + q4

α + β + p4 + · · ·
becomes limit periodic and the sequences of approximants in the m different arithmetic
progressions modulo m converge. The corollary below, which is also proved in [2], is an easy
consequence of Theorem 4.1.

Corollary 4.6. Let {pn}n≥1, {qn}n≥1 be complex sequences satisfying
∞∑

n=1

|pn| < ∞,

∞∑
n=1

|qn| < ∞.
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Let α and β be distinct roots of unity and let m be the least positive integer such that
αm = βm = 1 . Define

G :=
−αβ + q1

α + β + p1 +

−αβ + q2

α + β + p2 +

−αβ + q3

α + β + p3 + · · · .

Let {Pn/Qn}∞n=1 denote the sequence of approximants of G. If qn 6= αβ for any n ≥ 1, then
G does not converge. However, the sequences of numerators and denominators in each of
the m arithmetic progressions modulo m do converge. More precisely, there exist complex
numbers A0, . . . , Am−1 and B0, . . . , Bm−1 such that, for 0 ≤ i < m,

lim
k→∞

Pm k+i = Ai, lim
k→∞

Qm k+i = Bi. (23)

Extend the sequences {Ai} and {Bi} over all integers by making them periodic modulo m so
that (23) continues to hold. Then for integers i,

Ai =

(
A1 − βA0

α− β

)
αi +

(
αA0 − A1

α− β

)
βi, (24)

and

Bi =

(
B1 − βB0

α− β

)
αi +

(
αB0 −B1

α− β

)
βi. (25)

Moreover,

AiBj − AjBi = −(αβ)j+1αi−j − βi−j

α− β

∞∏
n=1

(
1− qn

αβ

)
. (26)

Put α := exp(2πia/m), β := exp(2πib/m), 0 ≤ a < b < m, and r := m/ gcd(b − a,m).

Then G has r distinct limits in Ĉ which are given by Aj/Bj, 1 ≤ j ≤ r. Finally, for k ≥ 0
and 1 ≤ j ≤ r,

Aj+kr

Bj+kr

=
Aj

Bj

.

The number r occuring in this theorem is just the number of distinct limits to which the
continued fraction tends. For this reason, we term it the rank of the continued fraction.

It is easy to derive general divergence results from this theorem, including Theorem 1.1,
the classical Stern-Stolz theorem [6]. The proof of Theorem 1.1 is immediate from Theorem
4.1. Just set ω1 = 1, ω2 = −1 (so m = 2), qn = 0 and pn = bn. In fact, Stern-Stolz
can be seen as the beginning of an infinite family of divergence theorems. We first give a
generalization of Stern-Stolz, then give a corollary describing the infinite family. Last, we
list the first few examples in the infinite family.

To obtain the generalization, take qn = an instead of qn = 0.

Corollary 4.7. Let the sequences {an} and {bn} satisfy an 6= −1 for n ≥ 1,
∑ |an| < ∞

and
∑ |bn| < ∞. Then

b0 + K∞
n=1

1 + an

bn

diverges. In fact, for p = 0, 1,

lim
n→∞

P2n+p = Ap 6= ∞, lim
n→∞

Q2n+p = Bp 6= ∞,
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and

A1B0 − A0B1 =
∞∏

n=1

(1 + an).

Proof. This follows immediately from Theorem 4.1, upon setting ω1 = 1, ω2 = −1 (so
m = 2), qn = an and pn = bn. ¤

We have not been able to find Corollary 4.7 in the literature.
The natural infinite family of Stern-Stolz type theorems is described by the following

corollary.

Corollary 4.8. Let the sequences {an} and {bn} satisfy an 6= 1 for n ≥ 1,
∑ |an| < ∞ and∑ |bn| < ∞. Let m ≥ 3 and let ω1 be a primitive m-th root of unity. Then

b0 + K∞
n=1

−1 + an

ω1 + ω−1
1 + bn

does not converge, but the numerator and denominator convergents in each of the m arith-
metic progressions modulo m do converge. If m is even, then for 1 ≤ p ≤ m/2,

lim
n→∞

Pmn+p = − lim
n→∞

Pmn+p+m/2 = Ap 6= ∞,

lim
n→∞

Qmn+p = − lim
n→∞

Qmn+p+m/2 = Bp 6= ∞.

If m is odd, then the continued fraction has rank m. If m is even, then the continued fraction
has rank m/2. Further, for 2 ≤ p ≤ m′, where m′ = m if m is odd and m/2 if m is even,

ApBp−1 − Ap−1Bp = −
∞∏

n=1

(1− an).

Proof. In Theorem 4.1, let ω2 = 1/ω1. ¤

Some explicit examples are given below.

Example 1. Let the sequences {an} and {bn} satisfy an 6= 1 for n ≥ 1,
∑ |an| < ∞ and∑ |bn| < ∞. Then each of the following continued fractions diverges:

(i) The following continued fraction has rank three:

b0 + K∞
n=1

−1 + an

1 + bn

. (27)

In fact, for p = 1, 2, 3,

lim
n→∞

P6n+p = − lim
n→∞

P6n+p+3 = Ap 6= ∞,

lim
n→∞

Q6n+p = − lim
n→∞

Q6n+p+3 = Bp 6= ∞.

(ii) The following continued fraction has rank four:

b0 + K∞
n=1

−1 + an√
2 + bn

. (28)
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In fact, for p = 1, 2, 3, 4,

lim
n→∞

P8n+p = − lim
n→∞

P8n+p+4 = Ap 6= ∞,

lim
n→∞

Q8n+p = − lim
n→∞

Q8n+p+4 = Bp 6= ∞.

(iii) The following continued fraction has rank five:

b0 + K∞
n=1

−1 + an

(1−√5)/2 + bn

. (29)

In fact, for p = 1, 2, 3, 4, 5,

lim
n→∞

P5n+p = Ap 6= ∞, lim
n→∞

Q5n+p = Bp 6= ∞.

(iv) The following continued fraction has rank six:

b0 + K∞
n=1

−1 + an√
3 + bn

. (30)

In fact, for p = 1, 2, 3, 4, 5, 6,

lim
n→∞

P12n+p = − lim
n→∞

P12n+p+6 = Ap 6= ∞,

lim
n→∞

Q12n+p = − lim
n→∞

Q12n+p+6 = Bp 6= ∞.

In each case we have, for p in the appropriate range, that

ApBp−1 − Ap−1Bp = −
∞∏

n=1

(1− an).

Proof. In Corollary 4.8, set
(i) ω1 = exp(2πi/6);
(ii) ω1 = exp(2πi/8);
(iii) ω1 = exp(2πi/5); (iv) ω1 = exp(2πi/12). ¤

The cases ω1 = exp(2πi/m), m = 3, 4, 10 give continued fractions that are the same
as those above after an equivalence transformation and renormalization of the sequences
{an} and{bn}. Note that the continued fractions (28) and (30) are, after an equivalence
transformation and renormalizing the sequences {an} and {bn}, of the forms

b0 + K∞
n=1

−2 + an

2 + bn

, (31)

and

b0 + K∞
n=1

−3 + an

3 + bn

, (32)

respectively. Because of the equivalence transformations employed, the convergents do not
tend to limits in (31) or (32). Also, it should be mentioned that Theorem 3.3 of [1] is
essentially the special case an = 0 of part (i) of our example. Nevertheless (31) and (32)
have ranks 4 and 6 respectively.

Corollary 4.6 now makes it trivial to construct q-continued fractions with arbitrarily many
limits.
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Example 2. Let f(x), g(x) ∈ Z[q][x] be polynomials with zero constant term. Let ω1, ω2 be
distinct roots of unity and suppose m is the least positive integer such that ωm

1 = ωm
2 = 1 .

Define

G(q) :=
−ω1ω2 + g(q)

ω1 + ω2 + f(q) +

−ω1ω2 + g(q2)

ω1 + ω2 + f(q2) +

−ω1ω2 + g(q3)

ω1 + ω2 + f(q3) + · · · .
Let |q| < 1. If g(qn) 6= ω1ω2 for any n ≥ 1, then G(q) does not converge. However,

the sequences of approximants of G(q) in each of the m arithmetic progressions modulo m

converge to values in Ĉ. The continued fraction has rank m/ gcd(b − a,m), where a and b
are as defined in Theorem 4.1.

From this example we can conclude that (2) and (3) are far from unique examples and
many other q-continued fractions with multiple limits can be immediately written down.
Thus, to Ramanujanize a bit, one can immediately see that the continued fractions

∞
K

n≥1

−1/2

1 + qn
and

∞
K

n≥1

−1/2 + qn

1 + qn
(33)

both have rank four, while the continued fractions

∞
K

n≥1

−1/3

1 + qn
and

∞
K

n≥1

−1/3 + qn

1 + qn
(34)

both have rank six.

4.2. Application: Generalization of a Continued Fraction of Ramanujan. In [3] we
gave a non-trivial example of the preceding theory, the inspiration for which is a beautiful
result of Ramanujan.

Theorem 4.9. Let |q| < 1, |α| = |β| = 1, α 6= β, and the order of λ := α/β in T be m. For
x, y 6= 0 and fixed |q| < 1, define

P (x, y) =
∞∑

n=0

xnqn(n+1)/2

(q)n(y q)n

.

Then

l.s.

( −αβ

α + β + q −
αβ

α + β + q2 −
αβ

α + β + q3 · · ·
)

= −βP (qα−1, βα−1)Tm − αP (qβ−1, αβ−1)

P (α−1, βα−1)Tm − P (β−1, αβ−1)
. (35)

Moreover,

−αβ

α + β + q −
αβ

α + β + q2 −
αβ

α + β + q3 · · · −
αβ

α + β + qn

∼ −βP (qα−1, βα−1)λn+1 − αP (qβ−1, αβ−1)

P (α−1, βα−1)λn+1 − P (β−1, αβ−1)
. (36)

In [3] we also used the Bauer-Muir Transform to produce some convergent continued
fractions. One such example is the following.
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Corollary 1. Let |q| < 1 and let α and β be distinct points on the unit circle such that α/β
is not a root of unity. Then

−β +
βq

α + q +
K∞

n=2

−αβq

qn + α + βq
= −β

∞∑
n=0

α−nqn(n+3)/2

(q; q)n(βq/α; q)n

∞∑
n=0

α−nqn(n+1)/2

(q; q)n(βq/α; q)n

. (37)

5. Poincaré type recurrences

Let the sequence {xn}n≥0 have the initial values x0, . . . , xp−1 and be subsequently defined
by

xn+p =

p−1∑
r=0

an,rxn+r, (38)

for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 such that

lim
n→∞

an,r = ar, 0 ≤ r ≤ p− 1. (39)

A recurrence of the form (38) satisfying the condition (39) is called a Poincaré-type recur-
rence, (39) being known as the Poincaré condition. Such recurrences were initially studied
by Poincaré who proved that if the roots of the characteristic equation

tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0 (40)

have distinct norms, then the ratios of consecutive terms in the recurrence (for any set of
initial conditions) tend to one of the roots. See [8]. Because the roots are also the eigenvalues
of the associated companion matrix, they are also referred to as the eigenvalues of (38). This
result was improved by O. Perron, who obtained a number of theorems about the limiting
asymptotics of such recurrence sequences. Perron [7] made a significant advance in 1921
when he proved the following theorem which for the first time treated cases of eigenvalues
which repeat or are of equal norm.

Theorem 5.1. Let the sequence {xn}n≥0 be defined by initial values x0, . . . , xp−1 and by (38)
for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 satisfying (39). Let q1, q2, . . . qσ

be the distinct moduli of the roots of the characteristic equation (40) and let lλ be the number
of roots whose modulus is qλ, multiple roots counted according to multiplicity, so that

l1 + l2 + . . . lσ = p.

Then, provided an,0 be different from zero for n ≥ 0, the difference equation (38) has a
fundamental system of solutions, which fall into σ classes, such that, for the solutions of the
λ-th class and their linear combinations,

lim sup
n→∞

n
√
|xn| = qλ.

The number of solutions of the λ-th class is lλ.
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Thus when all of the characteristic roots have norm 1, this theorem gives that

lim sup
n→∞

n
√
|xn| = 1.

Another related paper is [4] where the authors study products of matrices and give a
sufficient condition for their boundedness. This is then used to study “equimodular” limit
periodic continued fractions, which are limit periodic continued fractions in which the charac-
teristic roots of the associated 2× 2 matrices are all equal in modulus. The matrix theorem
in [4] can also be used to obtain results about the boundedness of recurrence sequences.
We study a more specialized situation here and obtain far more detailed information as a
consequence.

Our focus is on the case where the characteristic roots are distinct numbers on the unit
circle. Under a condition stronger than (39) we have a theorem showing that all non-trivial
solutions of such recurrences approach a limit set in a precisely controlled way. Specifically,
our theorem is:

Theorem 5.2. Let the sequence {xn}n≥0 be defined by initial values x0, . . . , xp−1 and by

xn+p =

p−1∑
r=0

an,rxn+r, (41)

for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 such that

∞∑
n=0

|ar − an,r| < ∞, 0 ≤ r ≤ p− 1.

Suppose further that the roots of the characteristic equation

tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0 (42)

are distinct and all on the unit circle, with values, say, α0, . . . , αp−1. Then there exist
complex numbers c0, . . . , cp−1 such that

xn ∼
p−1∑
i=0

ciα
n
i . (43)

The following corollary, also proved in [2], is immediate.

Corollary 5.3. Let the sequence {xn}n≥0 be defined by initial values x0, . . . , xp−1 and by

xn+p =

p−1∑
r=0

an,rxn+r,

for n ≥ 0. Suppose also that there are numbers a0, . . . , ap−1 such that

∞∑
n=0

|ar − an,r| < ∞, 0 ≤ r ≤ p− 1.

Suppose further that the roots of the characteristic equation

tp − ap−1t
p−1 − ap−2t

p−2 − · · · − a0 = 0
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are distinct roots of unity, say α0, . . . , αp−1. Let m be the least positive integer such that,
for all j ∈ {0, 1, . . . , p− 1}, αm

j = 1. Then, for 0 ≤ j ≤ m− 1, the subsequence {xmn+j}∞n=0

converges. Set lj = limn→∞ xnm+j, for integers j ≥ 0. Then the (periodic) sequence {lj}
satisfies the recurrence relation

ln+p =

p−1∑
r=0

arln+r,

and thus there exist constants c0, · · · , cp−1 such that

ln =

p−1∑
i=0

ciα
n
i .

6. Applications to (r, s)-matrix continued fractions

In [5], the authors define a generalization of continued fractions called (r, s)-matrix contin-
ued fractions. This generalization unifies a number of generalizations of continued fractions
including “generalized (vector valued) continued fractions” and “G-continued fractions”, see
[6] for terminology.

Here we show that our results apply to limit periodic (r, s)-matrix continued fractions with
eigenvalues of equal magnitude, giving estimates for the asymptotics of their approximants
so that their limit sets can be determined.

For consistency we closely follow the notation used in [5] to define (r, s)-matrix continued
fractions. Let Ms,r(C) denote the set of s × r matrices over the complex numbers. Let θk

be a sequence of n × n matrices over C. Assume that r + s = n. A (r, s)-matrix continued
fraction is associated with a recurrence system of the form Yk = Yk−1θk. The continued
fraction is defined by its sequence of approximants. These are sequences of s × r matrices
defined in the following manner.

Define the function f : D ∈ Mn(C) → Ms,r(C) by

f(D) = B−1A, (44)

where B is the s × s submatrix consisting of the last s elements from both the rows and
columns of D, and A is the s × r submatrix consisting of the first r elements from the last
s rows of D.

Then the k-th approximant of the (r, s)-matrix continued fraction associated with the
sequence θk is defined to be

sk := f(θkθk−1 · · · θ2θ1). (45)

To apply Theorem 1 to this situation, we endow Ms×r(C) with a metric by letting the
distance function for two such matrices be the maximum absolute value of the respective
differences of corresponding pairs of elements. Then, providing that the f is continuous,
(a suitable specialization of) our theorem can be applied. (Note that f will be continuous
providing that it exists, since the inverse function of a matrix is continuous when it exists.)

Let limk→∞ θk = θ, for some θ ∈ Mn(C). Then the recurrence system is said to be of
Poincaré type and the (r, s)-matrix continued fraction is said to be limit periodic. Under
our usual condition, Theorem 1 can be applied and the following theorem results.
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Theorem 6.1. Suppose that the condition
∑

k≥1 ||θk−θ|| < ∞ holds, that the matrix θ is di-
agonalizable, and that the eigenvalues of θ are all of magnitude 1. Then the kth approximant
sk has the asymptotic formula

sk ∼ f(θkF ), (46)

where F is the matrix defined by the convergent product

F := lim
k→∞

θ−kθkθk−1 · · · θ2θ1.

Note that because of the way that (r, s)-matrix continued fractions are defined, we have
taken products in the reverse order than the rest of the paper.

As a consequence of this asymptotic, the limit set can be determined from

l.s.(sk) = l.s.(f(θkF )).

7. Conclusion

Because of length restrictions, we have omitted several corollaries as well as most proofs.
Interested readers should consult the author’s papers [2] and [3].
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