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FURTHER COMBINATORIAL IDENTITIES DERIVING
FROM THE »n-TH POWER OF A 2 x2 MATRIX

J. MC LAUGHLIN AND NANCY J. WYSHINSKI

ABSTRACT. In this paper we use a formula for the n-th power of a 2 x 2
matrix A (in terms of the entries in A) to derive various combinatorial
identities. Three examples of our results follow.

1) We show that if m and n are positive integers and s € {0,1,2,...,
[(mn —1)/2]}, then

Z glt2t—mn+n (—1)nk+i(n+1) (m -1- l) (m -1- 2i> %
) k

i L+ Om—1)/2,i+k

(n(m—l—2(i+k))>< J )(n—l—s+t>
2j t—n(i+k) s—t
_ <mnls>

2) The generalized Fibonacci polynomial f,(x,s) can be expressed

Wmvy2) g
fm(z,s) = Z ( ! >xm_2k_ls'“.

k=0
We prove that the following functional equation holds:
fmn($7 S) = fm(x7 8) X fn ( fm-&-l(l’, 5) + Sfm—l(l‘, 5)7 _(_S)m) .
3) If an arithmetical function f is multiplicative and for each prime
p there is a complex number g(p) such that

O™ =ffE") — g "), n>1,

then f is said to be specially multiplicative. We give another derivation of
the following formula for a specially multiplicative function f evaluated
at a prime power:

k 7W2J_ i(k—J k=2j 0\
FO =Y =0T ) f ) ey

i=0 J

as

We also prove various other combinatorial identities.
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2 J. MC LAUGHLIN AND NANCY J. WYSHINSKI

1. INTRODUCTION

Throughout the paper, let I denote the 2 x 2-identity matrix and n an
arbitrary positive integer. In [7], the first author proved the following theo-
rem, which gives a formula for the n-th power of a 2 X 2 matrix in terms of

its entries:
a b
a=(23)

be an arbitrary 2x2 matrix and let T' = a+d denote its trace and D = ad—bc
its determinant. Let

Theorem 1. Let

2
= T’n—?i _D’L
m=> (") Hen

=0
Then, forn > 1,

A" — Yn — dyn—l byn—l
CYn—1 Yn — AQYn—-1)

The proof used the fact that
(1.1) Yp+1 = (a + d)yg + (bc — ad)yg—1.

This theorem was then used to derive various binomial identities. As an
example, we cite the following corollary.

Corollary 1. Let n be a positive integer and let m be an integer with 0 <
m < 2n. Then for —n < w < n,

[V (RS

iy n n k4+n+2w—m-—1 k
Z E+w/\n+k+w—m k (=1)%
k=—2w—n+m-+1

In this present paper we use Theorem 1 to derive some further identities.

n

>
Il

2. A BINOMIAL IDENTITY DERIVING FROM (A™)" = A™"
We use the trivial identity (A™)"™ = A™" to prove the following theorem.

Theorem 2. Let m and n be positive integers and let s € {0,1,2,...,|(mn—
1)/2|}. Then

_ —1)hHint) -1 — i\ fm—1—2i
21 2l+2t mn+n (
21 1+6 i k X

ey (m—1)/2,i+k

<n(m12j2(z’+k))><t_n(ji+k)> (ni_:+t> _ (mn815>7
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wheret, j, k and t run through integral values which keep all binomial entries

n (2.1) non-negative, and
5 I, p=g,
p.q =
0, p#4q.

A—G é)

From Theorem 1 and (1.1) we have that

Proof. Let

(2.2) A" — Yn Yn—1 _ Yn Yn—1
TYn—-1 Yn — Yn—1 TYn-1 TYn—2)’
with
M2
2.3 = b=y _9.
(2.3) Yk ;(1)37 Yk—1 + T Yp—2

Let T, denote the trace of A™ and D,, the determinant of A™ (so D,, =
(—x)™). From (2.2) we have that

(2.4) Th = yn+ xYn_o.

Thus the sequence {T;,} satisfies the same recurrence relation as the sequence

{yn}, namely
Thi1=Th + 2T .

This leads to the explicit formula

(2.5) T, = (1 T m) + (W)n
= ot L:z? :f <2k>< )4]"’“"]

After some straightforward but tedious calculations, we derive from the first
of these equalities, for integral > 0, that

(2.6)
|nr/2] |r/2] |n(r—2k)/2]

2D D D S (A Qe [ Ea o= ot

s=0 k=0 =0
As usual,

For integral j > 0 define

TN |
(2.7) yM=3 ( Z. )Té‘Ql(—Dn)Z.
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Then Theorem 1 and the trivial identity A™" = (A™)™ give that
Ymn Ymn—1 _ Yn Yn—1 "
TYmn—1 TYmn—2 TYn—1 TYn—2
_ yg) - xyn—ny(:zl yn—lyy(:zl
- (n) (n) _ (n) )
TYn—1Yp 1 Ym Yn—1Ym, 1

If we compare (1,2) entries of the first and last matrices, we have that

(n)
Ymn—1 = Yn—-1Y, 2 1-

Upon combining (2.7), (2.6) and (2.3), we get that

(mn=n)2)
()

s=0
[(mn—1)

/2 nk+i(n . .
- Z Z gl+2t—mntn (—1)nktiln+D) <m— 1—2> (m— 1—2z>
7 k

eyl 1+ 0(m-1)/2,i+k

(Tt ()

Here ¢, j, k, and ¢t run through all sets of integers which keep all binomial
entries non-negative. The result now follows upon comparing coefficients of
like powers of x. O

Upon comparing like powers of = on each side of (2.4), using (2.3) and
(2.5), we get the following.

Corollary 2. Let n be a positive integer. Then for each integer s, 0 < s <

[n/2],

[n/2]

v 2 (5) () == (0)

j S

This identity is also found in [1] (page 442) and [3] (formula 3.120).

3. A PROOF OF AN IDENTITY FOR SPECIALLY MULTIPLICATIVE
FUNCTIONS

An arithmetical function f is said to be multiplicative if f(1) =1 and

(3.1) f(mn) = f(m)f(n),

whenever (m,n) = 1. If (3.1) holds for all m and n, then f is said to be
completely multiplicative. A multiplicative function f is said to be specially
multiplicative if there is a completely multiplicative function fa such that

= > 1 (@) @

d|(m,n)



COMBINATORIAL IDENTITIES AND 2 x 2 MATRICES 5

for all m and n. An alternative characterization of specially multiplicative
functions is given below (see [5], for example):

If f is multiplicative and for each prime p there is a complex number g(p)
such that

(3.2) FEY =) f") — g f"Y), n>1,

then f is specially multiplicative. (In this case, f4(p) = g(p), for all primes

p)-
We give an alternative proof of the following known result (also see [5],
for example).

Proposition 1. Let f and g be as at (3.2). Then for k > 0 and all primes
p;

Lk/2] .
k\ _ BRRY) k—j
FEM) =« 1)( i

=0

>f(p)k‘2jg(p)j-

Proof. Clearly we can assume k > 3. Equation 3.2 implies that

(3.3)
(190, 102) - (g6 S (Jo)
I o)
- <f(p)2 —g(p) f(p)) (f(](g)) (1)>k2
—g\p

S (R ) [

The result now follows immediately from Theorem 1, upon comparing (1, 1)
entries on each side. U

=

Remark: The Ramanujan 7 function is specially multiplicative with g(p)
= p''. We note in passing that the 7 Conjecture for p prime, namely that
I7(p)| < 2p'/2, is equivalent to the conjecture that limy_. 7(p*)/7(pF~1)
does not exist. This follows from (3.3), the correspondence between matrices
and continued fractions and Worpitzky’s Theorem for continued fractions.

4. A RECURRENCE FORMULA FOR THE GENERALIZED FIBONACCI
PoLyNOMIALS

The Fibonacci polynomials {fp,(z,s)}5°_, are defined by fo(z,s) = 0,
fi(z,s) =1 and foi1(x,s) = xfu(x,s) + sfa_1(x,s), for n > 1. They are
given explicitly by the formula

[(m—1)/2] m—k—1
fm(x,s) = Z < f )xm_%_lsk.
k=0
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It is clear from Theorem 1 that the f,(x,s) satisfy

z 1 m: fm+1(x73) fm(was)
s 0 Sfm(z,s)  fm+1(z,s) — xfim(x,s)
— fm+1($,3) fm($,8)
sSfm(z,s)  Sfm-1(z,s)) "
We can now use the trivial identity A™" = (A™)" applied to the matrix

(1)>, together with Theorem 1 applied to the (1,2)-entries on each side

to get the following functional equation for the Fibonacci polynomials.

Corollary 3. Let fi(z,s) denote the i-th Fibonacci polynomial and let m
and n be positive integers. Then

fmn(xa 5)
L25)

) (")) erlo8) + shnan)] o

k=0

= fm(l',S) X fn(fm—i—l(xas) + Sfm_l(l',S), _(_s)m) .

5. A POLYNOMIAL IDENTITY OF BHATWADEKAR AND ROY

In [8] Sury gave a proof of the following polynomial identity, which he
attributes to Bhatwadekar and Roy [2]:

Corollary 4. For every positive integer n and all x,

[n/2] i\ '
Z(_l)l( . >$Z(1+$)”_2’:1+x+...+xn_

- (3
=0

Proof. Clearly we can assume n > 2. One easily checks by induction that,
for n > 2,

1 1 —ant! 1—a" _(1+z 1\"
-z \—z(1-2") —z1-2"YH) "\ -2 0] -
The result is now immediate from Theorem 1. O

6. OTHER ELEMENTARY IDENTITIES

If we replace n by n + 1 in Equation 2.2 and take the determinant of the
first and last matrices, we get

(—HIT)n+1 = x(yn+1yn—1 - .%21)-

Upon comparing coeflicients of x*, for 0 < s < n — 1 on each side, we get
the following identity.
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Corollary 5. Let n be a positive integer. If s is an integer, 0 < s <n —1,
then

61) ;(n;jjj><n]—j>:]§<n+i:j+]>(n_;_3)

Once again we start with the matrix A = (1) and then consider the
identity A™" = (A™)" = (A™)™ for small values of m.

Corollary 6. Let n be a positive integer and let s be an integer, 0 < s <
n—1. Then

(6:2) > (” e 1) (" e 1) 22 (1)’

i>0
_an/? n <n—i>(n+i—s—1>_(2n—s—1)
L — i s—1i - s '
=0
Proof. With A as defined above, we have
2 ZL‘+1 1
worr D)

If we compare the (1,2) entries of A?® and (A42)", using Theorem 1, we get
that

n— 1J

s=0 =0
1% n

ZZ:; 22;) ( _2_1) <n_§i_1>2j(—1)ix2”j
[ (P S

s=0 1

The equality of the first and third terms in (6.2) follows on comparing
powers of . On the other hand, Theorem 1 also gives that

2 2
A2 — (An)Q _ Yn Yn—1 _ Yn Yn—1
LYn—1 Yn — Yn—1 LTYn—1 T Yn—2
_ ( y721 + xyr%—l yn—12(yn +z y2n—2)>
X yn—l(yn +2x yn—Q) ‘T(ynfl + ‘Tyn72) ’

where yy, is as at (2.3). It is easy to show that

[r/2] n In—i\
(6.3 Yot TUnz= 3 ( . )x

- n-—1 1
=0
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If we compare the (1,2) entries of 42" and (A™)? using (6.3) and Theorem
1, then

”‘1<2n—s—1> . e <n—z’>(n—k—1> ek
E xr = " . X
S e~ 1 — 1 ) k

s=0 k=0 =0

_"Z_:Hn/QJ n n—t\/n+i1—s—1 "
- L — i\ i s—1i ’

The equality of the second and third terms in (6.2) now follows. O

A similar consideration of A3" and (A3)" gives the following identity.

Corollary 7. Letn be a positive integer and s an integer such that 0 < s <
|(3n —1)/2]. Then
(6.4)

/2] 3131.(71—@'—1) (< n— 2 ) (n—2i>> <3n—5—1>
3 ! e ) = .
= 7 s—31—1 s — 31 S

Proof. Since
43— <2x—|—1 x—l—l)

22 +x T

comparing the (1,2) entries of A3 and (A43)", using Theorem 1, gives

L= 3n—s—1 22 n—1i—1
) T 5 1 e 1yn—2i—1,3i
65 > < ) >x (+1) > ( . >(3x+ ) T

s=0 1=0

The results follows, after a little simplification, upon comparing coefficients
of like powers of = on each side of (6.5). O

More generally, one can use the identity A™™" = A™A™ together with
Theorem 1 to compare the (1,1) entries on each side to get (again using the
notation from (2.3)) that

Yman = YmYn + Ym—1 (-73 yn71)~

Upon collecting like powers of x and equating coefficients on each side, we
get the following identity.

Corollary 8. Let m and n be a positive integer and s an integer such that
0<s<|(m+n)/2]. Then
(6.6)

SO0 ) =)



COMBINATORIAL IDENTITIES AND 2 x 2 MATRICES 9

7. CONCLUDING REMARKS

Some other interesting consequences follow readily from Theorem 1. We
consider two more.
If we let A= (”5 8), then Waring’s formula

[n/2] .
Pyt =Y <n : ]>(Jf+y)"_2j(—wy)j

S AN

can be derived easily by considering the trace of A™.
If we set A = (%}), then Theorem 1 and the correspondence between
continued fractions and matrices give that, for > 0,

1]

2l

3]

(4]
[5]
(6]
(7]
(8]

(9]

lim 7=0 = 2
n—oo |(n—1)/2] 1 . 1’24-4—5[,“
(n —J ) 2 1-2]
=0 J
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