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FURTHER COMBINATORIAL IDENTITIES DERIVING
FROM THE n-TH POWER OF A 2× 2 MATRIX

J. MC LAUGHLIN AND NANCY J. WYSHINSKI

Abstract. In this paper we use a formula for the n-th power of a 2×2
matrix A (in terms of the entries in A) to derive various combinatorial
identities. Three examples of our results follow.

1) We show that if m and n are positive integers and s ∈ {0, 1, 2, . . . ,
b(mn− 1)/2c}, then

∑
i,j,k,t

21+2t−mn+n (−1)nk+i(n+1)

1 + δ(m−1)/2, i+k

(
m− 1− i

i

)(
m− 1− 2i

k

)
×

(
n(m− 1− 2(i + k))

2j

)(
j

t− n(i + k)

)(
n− 1− s + t

s− t

)

=

(
mn− 1− s

s

)
.

2) The generalized Fibonacci polynomial fm(x, s) can be expressed
as

fm(x, s) =

b(m−1)/2c∑
k=0

(
m− k − 1

k

)
xm−2k−1sk.

We prove that the following functional equation holds:

fmn(x, s) = fm(x, s)× fn ( fm+1(x, s) + sfm−1(x, s), −(−s)m) .

3) If an arithmetical function f is multiplicative and for each prime
p there is a complex number g(p) such that

f(pn+1) = f(p)f(pn)− g(p)f(pn−1), n ≥ 1,

then f is said to be specially multiplicative. We give another derivation of
the following formula for a specially multiplicative function f evaluated
at a prime power:

f(pk) =

bk/2c∑
j=0

(−1)j

(
k − j

j

)
f(p)k−2jg(p)j .

We also prove various other combinatorial identities.
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2 J. MC LAUGHLIN AND NANCY J. WYSHINSKI

1. Introduction

Throughout the paper, let I denote the 2 × 2-identity matrix and n an
arbitrary positive integer. In [7], the first author proved the following theo-
rem, which gives a formula for the n-th power of a 2× 2 matrix in terms of
its entries:

Theorem 1. Let

A =
(

a b
c d

)
be an arbitrary 2×2 matrix and let T = a+d denote its trace and D = ad−bc
its determinant. Let

yn =
bn/2c∑
i=0

(
n− i

i

)
Tn−2i(−D)i.

Then, for n ≥ 1,

An =
(

yn − d yn−1 b yn−1

c yn−1 yn − a yn−1

)
.

The proof used the fact that

(1.1) yk+1 = (a + d)yk + (bc− ad)yk−1.

This theorem was then used to derive various binomial identities. As an
example, we cite the following corollary.

Corollary 1. Let n be a positive integer and let m be an integer with 0 ≤
m ≤ 2n. Then for −n ≤ w ≤ n,

n−1∑
k=0

(
n− 1− k

k

)(
n

w + k

)(
k + w

m− k − w

)
(−1)k =

m−w∑
k=−2w−n+m+1

(
n

k + w

)(
n

n + k + w −m

)(
k + n + 2w −m− 1

k

)
(−1)k.

In this present paper we use Theorem 1 to derive some further identities.

2. A Binomial Identity deriving from (Am)n = Amn

We use the trivial identity (Am)n = Amn to prove the following theorem.

Theorem 2. Let m and n be positive integers and let s ∈ {0, 1, 2, . . . , b(mn−
1)/2c}. Then

(2.1)
∑
i,j,k,t

21+2t−mn+n (−1)nk+i(n+1)

1 + δ(m−1)/2, i+k

(
m− 1− i

i

)(
m− 1− 2i

k

)
×

(
n(m− 1− 2(i + k))

2j

)(
j

t− n(i + k)

)(
n− 1− s + t

s− t

)
=
(

mn− 1− s

s

)
,
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where i, j, k and t run through integral values which keep all binomial entries
in (2.1) non-negative, and

δp, q =

{
1, p = q,

0, p 6= q.

Proof. Let

A =
(

1 1
x 0

)
.

From Theorem 1 and (1.1) we have that

(2.2) An =
(

yn yn−1

x yn−1 yn − yn−1

)
=
(

yn yn−1

x yn−1 x yn−2

)
,

with

(2.3) yk =
bk/2c∑
i=0

(
k − i

i

)
xi = yk−1 + x yk−2.

Let Tn denote the trace of An and Dn the determinant of An (so Dn =
(−x)n). From (2.2) we have that

(2.4) Tn = yn + x yn−2.

Thus the sequence {Tn} satisfies the same recurrence relation as the sequence
{yn}, namely

Tn+1 = Tn + xTn−1.

This leads to the explicit formula

Tn =
(

1 +
√

1 + 4x

2

)n

+
(

1−
√

1 + 4x

2

)n

(2.5)

=
1

2n+1

bn/2c∑
j=0

bn/2c∑
k=j

(
n

2k

)(
k

j

)
4jxj .

After some straightforward but tedious calculations, we derive from the first
of these equalities, for integral r ≥ 0, that

T r
n =

bnr/2c∑
s=0

br/2c∑
k=0

bn(r−2k)/2c∑
i=0

(
r

k

)(
n(r − 2k)

2i

)(
i

s− nk

)
21+2t−rn (−1)nk

1 + δr/2, k
xs.

(2.6)

As usual,

δp, q =

{
1, p = q,

0, p 6= q.

For integral j ≥ 0 define

(2.7) y
(n)
j =

bj/2c∑
i=0

(
j − i

i

)
T j−2i

n (−Dn)i.
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Then Theorem 1 and the trivial identity Amn = (An)m give that(
ymn ymn−1

x ymn−1 xymn−2

)
=
(

yn yn−1

x yn−1 xyn−2

)m

=

(
y

(n)
m − xyn−2y

(n)
m−1 yn−1y

(n)
m−1

x yn−1y
(n)
m−1 y

(n)
m − yn−1y

(n)
m−1

)
.

If we compare (1, 2) entries of the first and last matrices, we have that

ymn−1 = yn−1y
(n)
m−1.

Upon combining (2.7), (2.6) and (2.3), we get that

b(mn−1)/2c∑
s=0

(
mn− 1− s

s

)
xs

=
b(mn−1)/2c∑

s=0

∑
i,j,k,t

21+2t−mn+n (−1)nk+i(n+1)

1 + δ(m−1)/2, i+k

(
m− 1− i

i

)(
m− 1− 2i

k

)

×
(

n(m− 1− 2(i + k))
2j

)(
j

t− n(i + k)

)(
n− 1− s + t

s− t

)
xs.

Here i, j, k, and t run through all sets of integers which keep all binomial
entries non-negative. The result now follows upon comparing coefficients of
like powers of x. �

Upon comparing like powers of x on each side of (2.4), using (2.3) and
(2.5), we get the following.

Corollary 2. Let n be a positive integer. Then for each integer s, 0 ≤ s ≤
bn/2c,

1
2n−2s−1

bn/2c∑
j=s

(
n

2j

)(
j

s

)
=

n

n− s

(
n− s

s

)
.

This identity is also found in [1] (page 442) and [3] (formula 3.120).

3. A Proof of an Identity for Specially Multiplicative
Functions

An arithmetical function f is said to be multiplicative if f(1) = 1 and

(3.1) f(mn) = f(m)f(n),

whenever (m,n) = 1. If (3.1) holds for all m and n, then f is said to be
completely multiplicative. A multiplicative function f is said to be specially
multiplicative if there is a completely multiplicative function fA such that

f(m)f(n) =
∑

d|(m,n)

f
(mn

d2

)
fA(d)
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for all m and n. An alternative characterization of specially multiplicative
functions is given below (see [5], for example):

If f is multiplicative and for each prime p there is a complex number g(p)
such that

(3.2) f(pn+1) = f(p)f(pn)− g(p)f(pn−1), n ≥ 1,

then f is specially multiplicative. (In this case, fA(p) = g(p), for all primes
p).

We give an alternative proof of the following known result (also see [5],
for example).

Proposition 1. Let f and g be as at (3.2). Then for k ≥ 0 and all primes
p,

f(pk) =
bk/2c∑
j=0

(−1)j

(
k − j

j

)
f(p)k−2jg(p)j .

Proof. Clearly we can assume k ≥ 3. Equation 3.2 implies that

(
f(pk) f(pk−1)

f(pk−1) f(pk−2)

)
=
(

f(pk−1) f(pk−2)
f(pk−2) f(pk−3)

)(
f(p) 1
−g(p) 0

)(3.3)

=
(

f(p2) f(p)
f(p) 1

)(
f(p) 1
−g(p) 0

)k−2

=
(

f(p)2 − g(p) f(p)
f(p) 1

)(
f(p) 1
−g(p) 0

)k−2

=
((

0 0
1 + g(p) 0

)
+
(

f(p) 1
−g(p) 0

))(
f(p) 1
−g(p) 0

)k−1

.

The result now follows immediately from Theorem 1, upon comparing (1, 1)
entries on each side. �

Remark: The Ramanujan τ function is specially multiplicative with g(p)
= p11. We note in passing that the τ Conjecture for p prime, namely that
|τ(p)| < 2p11/2, is equivalent to the conjecture that limk→∞ τ(pk)/τ(pk−1)
does not exist. This follows from (3.3), the correspondence between matrices
and continued fractions and Worpitzky’s Theorem for continued fractions.

4. A Recurrence Formula for the Generalized Fibonacci
Polynomials

The Fibonacci polynomials {fm(x, s)}∞m=0 are defined by f0(x, s) = 0,
f1(x, s) = 1 and fn+1(x, s) = xfn(x, s) + sfn−1(x, s), for n ≥ 1. They are
given explicitly by the formula

fm(x, s) =
b(m−1)/2c∑

k=0

(
m− k − 1

k

)
xm−2k−1sk.
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It is clear from Theorem 1 that the fn(x, s) satisfy(
x 1
s 0

)m

=
(

fm+1(x, s) fm(x, s)
sfm(x, s) fm+1(x, s)− xfm(x, s)

)
=
(

fm+1(x, s) fm(x, s)
sfm(x, s) sfm−1(x, s)

)
.

We can now use the trivial identity Am n = (Am)n applied to the matrix(
x 1
s 0

)
, together with Theorem 1 applied to the (1, 2)-entries on each side

to get the following functional equation for the Fibonacci polynomials.

Corollary 3. Let fi(x, s) denote the i-th Fibonacci polynomial and let m
and n be positive integers. Then

fmn(x, s)

= fm(x, s)
bn−1

2
c∑

k=0

(
n− k − 1

k

)[
fm+1(x, s) + sfm−1(x, s)

]n−2k−1(−(−s)m)k

= fm(x, s)× fn ( fm+1(x, s) + sfm−1(x, s), −(−s)m) .

5. A Polynomial Identity of Bhatwadekar and Roy

In [8] Sury gave a proof of the following polynomial identity, which he
attributes to Bhatwadekar and Roy [2]:

Corollary 4. For every positive integer n and all x,

bn/2c∑
i=0

(−1)i

(
n− i

i

)
xi(1 + x)n−2i = 1 + x + · · ·+ xn.

Proof. Clearly we can assume n ≥ 2. One easily checks by induction that,
for n ≥ 2,

1
1− x

(
1− xn+1 1− xn

−x(1− xn) −x(1− xn−1)

)
=
(

1 + x 1
−x 0

)n

.

The result is now immediate from Theorem 1. �

6. Other Elementary Identities

If we replace n by n + 1 in Equation 2.2 and take the determinant of the
first and last matrices, we get

(−x)n+1 = x(yn+1yn−1 − y2
n).

Upon comparing coefficients of xs, for 0 ≤ s ≤ n − 1 on each side, we get
the following identity.
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Corollary 5. Let n be a positive integer. If s is an integer, 0 ≤ s ≤ n− 1,
then

(6.1)
∑
j≥0

(
n− s + j

s− j

)(
n− j

j

)
=
∑
j≥0

(
n + 1− s + j

s− j

)(
n− 1− j

j

)
.

Once again we start with the matrix A = ( 1 1
x 0 ) and then consider the

identity Amn = (Am)n = (An)m for small values of m.

Corollary 6. Let n be a positive integer and let s be an integer, 0 ≤ s ≤
n− 1. Then

(6.2)
∑
i≥0

(
n− i− 1

i

)(
n− 2i− 1

s− 2i

)
2s−2i(−1)i

=
bn/2c∑
i=0

n

n− i

(
n− i

i

)(
n + i− s− 1

s− i

)
=
(

2n− s− 1
s

)
.

Proof. With A as defined above, we have

A2 =
(

x + 1 1
x x

)
.

If we compare the (1, 2) entries of A2n and (A2)n, using Theorem 1, we get
that

n−1∑
s=0

(
2n− s− 1

s

)
xs =

bn−1
2
c∑

i=0

(
n− i− 1

i

)
(2x + 1)n−2i−1(−x2)i

=
bn−1

2
c∑

i=0

n−2i−1∑
j=0

(
n− i− 1

i

)(
n− 2i− 1

j

)
2j(−1)ix2i+j

=
n−1∑
s=0

∑
i≥0

(
n− i− 1

i

)(
n− 2i− 1

s− 2i

)
2s−2i(−1)ixs.

The equality of the first and third terms in (6.2) follows on comparing
powers of x. On the other hand, Theorem 1 also gives that

A2n = (An)2 =
(

yn yn−1

x yn−1 yn − yn−1

)2

=
(

yn yn−1

x yn−1 x yn−2

)2

=
(

y2
n + xy2

n−1 yn−1(yn + x yn−2)
x yn−1(yn + x yn−2) x(y2

n−1 + x y2
n−2)

)
,

where yk is as at (2.3). It is easy to show that

(6.3) yn + x yn−2 =
bn/2c∑
i=0

n

n− i

(
n− i

i

)
xi.
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If we compare the (1, 2) entries of A2n and (An)2 using (6.3) and Theorem
1, then

n−1∑
s=0

(
2n− s− 1

s

)
xs =

bn−1
2
c∑

k=0

bn/2c∑
i=0

n

n− i

(
n− i

i

)(
n− k − 1

k

)
xi+k

=
n−1∑
s=0

bn/2c∑
i=0

n

n− i

(
n− i

i

)(
n + i− s− 1

s− i

)
xs.

The equality of the second and third terms in (6.2) now follows. �

A similar consideration of A3n and (A3)n gives the following identity.

Corollary 7. Let n be a positive integer and s an integer such that 0 ≤ s ≤
b(3n− 1)/2c. Then
(6.4)
bn/2c∑
i=0

3s−1−3i

(
n− i− 1

i

)((
n− 2i

s− 3i− 1

)
+ 3
(

n− 2i

s− 3i

))
=
(

3n− s− 1
s

)
.

Proof. Since

A3 =
(

2x + 1 x + 1
x2 + x x

)
,

comparing the (1, 2) entries of A3n and (A3)n, using Theorem 1, gives

(6.5)
b 3n−1

2
c∑

s=0

(
3n− s− 1

s

)
xs = (x + 1)

bn−1
2
c∑

i=0

(
n− i− 1

i

)
(3x + 1)n−2i−1x3i.

The results follows, after a little simplification, upon comparing coefficients
of like powers of x on each side of (6.5). �

More generally, one can use the identity Am+n = AmAn together with
Theorem 1 to compare the (1, 1) entries on each side to get (again using the
notation from (2.3)) that

ym+n = ymyn + ym−1(x yn−1).

Upon collecting like powers of x and equating coefficients on each side, we
get the following identity.

Corollary 8. Let m and n be a positive integer and s an integer such that
0 ≤ s ≤ b(m + n)/2c. Then
(6.6)∑

i≥0

(
m− i

i

)(
n− s + i

s− i

)
+
(

m− i− 1
i

)(
n− s + i

s− i− 1

)
=
(

m + n− s

s

)
.
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7. Concluding Remarks

Some other interesting consequences follow readily from Theorem 1. We
consider two more.

If we let A =
(

x 0
0 y

)
, then Waring’s formula

xn + yn =
bn/2c∑
j=0

n

n− j

(
n− j

j

)
(x + y)n−2j(−x y)j

can be derived easily by considering the trace of An.
If we set A = ( x 1

1 0 ), then Theorem 1 and the correspondence between
continued fractions and matrices give that, for x > 0,

lim
n→∞

bn/2c∑
j=0

(
n− j

j

)
xn−2j

b(n−1)/2c∑
j=0

(
n− 1− j

j

)
xn−1−2j

=
2√

x2 + 4− x
.
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