
West Chester University
Digital Commons @ West Chester University

Computer Science College of the Sciences & Mathematics

4-10-2016

Uncertainty Avoidance—A New Teaching/
Learning Method for an Introductory
Programming Course
Zhen Jiang
West Chester University of Pennsylvania, zjiang@wcupa.edu

Follow this and additional works at: http://digitalcommons.wcupa.edu/compsci_facpub

Part of the Computer Sciences Commons, and the Educational Methods Commons

This Article is brought to you for free and open access by the College of the Sciences & Mathematics at Digital Commons @ West Chester University. It
has been accepted for inclusion in Computer Science by an authorized administrator of Digital Commons @ West Chester University. For more
information, please contact wcressler@wcupa.edu.

Recommended Citation
Jiang, Z. (2016). Uncertainty Avoidance—A New Teaching/ Learning Method for an Introductory Programming Course. Computer
Education, 4(4), 52-58. Retrieved from http://digitalcommons.wcupa.edu/compsci_facpub/27

http://digitalcommons.wcupa.edu?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/cas?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub/27?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wcressler@wcupa.edu

计 算 机 教 育
Computer Education

中图分类号(CLC)：G642

52

第 4 期 No. 4
2016 年 4 月 10 日 Apr. 10 2016

Uncertainty Avoidance—A New Teaching/
Learning Method for an Introductory

Programming Course
Zhen Jiang

(Department of Computer Science, Information Security Center, West Chester University, West Chester, PA 19383,
USA)

Abstract: In this paper, we introduce a new procedure for under-represented students to quickly learn the use

of the decision structure in computer programming. The challenge here is to help students, who lack sufficient

background of mathematics and computer programming, to use this structure correctly without too much doubt

and uncertainty. The traditional CS0 program elapses several semesters and requires many foundation courses

to be taken before the students have knowledge of the program correctness. Our one-semester course CSC115

allows students to build up programming skills gradually case by case and program by program. Such a

guideline is proven to be effective for those inexperienced students to write correct If-else/If statements without

the need for learning formal methods in classroom.

Key words: certificated course curriculum; education module and experience; uncertainty and doubt in

introductory computer education.

文章编号(Article Code)：1672-5913(2016)04-0052-07

1 Introduction

Cyber security is a hot topic. A number of institutes
designated by the National Security Agency (NSA)[1]
has provided a high standard (e.g., Ref. [2]) of education
in this area. One of the NSA certified programs[3] at
West Chester University(WCU) is set to engage under-
represented non-CS（computer science） majors in this
interesting and important issue.

To attract more undergraduates from a broad range
of fields to our rigorous introductory course, a problem
cannot be ignore is the students’ feeling of uncertainty
and doubt. Due to the lack of sufficient background,
those students may encounter more obstacles than CS
major students to hurdle in the class. Any unexpected
challenge, as those students called it “the uncertain
thing,” can scare them away from a full dedication to
the learning, causing an inefficient learning or even a

total quit.
To completely solve the problem, we need an

efficient pedagogy method to help students learn the
materials with a significant technical depth in a very
short time frame, paving the road for inexperience
students to do what a CS graduate may have in that
class. By the time we give them an explanation with
sufficient technical background on what they concern
about, we also need to ensure that they can fully
understand it without any obstacle.

 In this paper, we demonstrate our practice in an
introductory programming class, in attempting to solve
the aforementioned uncertainty problem. We first
show a very common scenario that raises the students’
uncertainty, when we introduce the decision structure
in such an introductory course. Then we provide our
solution. From our practice, this approach helps the
target students to build a complex program quickly

第 4 期 53专题策划（Special Section）No. 4

in a convenient and error-free way. By continuously
working and making progress under our guidance,
more non-CS majors reach our education goal as a CS
graduate can do in using the decision structure.

The remainder is organized as follows: Section 2
describes the target problem. Section 3 claims the idea
of our solution. In section 4, our practice is introduced
in details. Section 5 summarizes the results. Section 6
presents some conclusions.

2 Problem

“CSC115 - Introduction to Computer Programming”
is an entry-level programming course[4] and is the
only prerequisite course for non-computer-science
majors to take our NSA- certified topic courses [5]. This
course aims to structure a programming basis for the
development of complex computer application in the
succeeding topic courses. It is for all non-CS majors,
with up to 8 sessions each semester, four times the
number of sessions of the entry- level programming
course that we make available to CS major.

The if-else statement is a basic decision structure
introduced in this VB course (see Fig. 1 (a)). However,
our non-CS major students may not have sufficient exp-
erience to interpret their understanding of requirements
with the program statements. A simple development of
the boolean expression such as the check of a leap year
can scare them away and make them easily drop the
class in the middle of semester. Usually, this problem
has occurred early in their first if-else program when
they do not have sufficient knowledge (e.g., [6]) to
ensure a correct boolean expression in the test part.

For instance, when a program to check the passing
score (i.e., an integer read from a text field, 60 or
above) is discussed in class, students may give different
answers as shown in Fig. 1 (b). If this ambiguity cannot
be explained clearly in time, its snowball effect may
create too much tension and make our students doubt
on their programming skills and capability.

3 Idea

In the normal learning process in the CS0 program [7], the

Fig. 1 (a) Syntax of If-else and If statements,
and (b) Uncertain development of the boolean expression.

students will gain programming skills by accumulating
experience from a lot of practices in order to build up the
knowledge of the concepts and styles. To develop the
code correctly, students need to learn advanced concept
and techniques such as the operational semantics.
Our CSC115 course has a strict time constraint in one
semester. Therefore, a practical method is needed
to effectively guarantee the quality of programming,
while those advanced concepts and techniques must be
transparent.

In the following, we introduce our practice in a five-
phases learning process, as well as the corresponding
assessment plan. Step by step, students can obtain
all they needed to develop a correct program on the
decision making and solve the above uncertainty
problem, because the obstacles can be mitigated in their
gradual progresses.

4 Uncertainty a Voidance in Our Education
Practice

After basic concepts and flow chart of the If-else
statement are introduced in class, the students in
our class will walk through five phases to obtain the
required skills and knowledge. These five phases form
a spiral learning model, with each step assessed easily.
More importantly, this model interprets the entire

Action 1 Action 2

Action 3

true false
test

:boolean
expression Action 1

Action 3

true false
test

:boolean
expression

(a)

Dim grade as Integer = Input.text Dim grade as Integer = Input.text
If grade > 59 then

Output.text = "Congratulations"
’ print process

end if

(b)

If grade >= 60 then

Output.text = "Congratulations"
’ print process

end if

Action 1 Action 2

Action 3

true false
test

:boolean
expression Action 1

Action 3

true false
test

:boolean
expression

(a)

Dim grade as Integer = Input.text Dim grade as Integer = Input.text
If grade > 59 then

Output.text = "Congratulations"
’ print process

end if

(b)

If grade >= 60 then

Output.text = "Congratulations"
’ print process

end if

Action 1 Action 2

Action 3

true false
test

:boolean
expression Action 1

Action 3

true false
test

:boolean
expression

(a)

Dim grade as Integer = Input.text Dim grade as Integer = Input.text
If grade > 59 then

Output.text = "Congratulations"
’ print process

end if

(b)

If grade >= 60 then

Output.text = "Congratulations"
’ print process

end if

201654
计 算 机 教 育
Computer Education

development process. For any mistake or missing
part students made in the design, coding, or testing,
the instructor can quickly locate the training part that
needs to be reinforced and help students to hurdle the
obstacles (i.e., uncertainty avoidance).
4.1 Boolean expression, complex one, and
their values
In this phase, the students need to learn the format
and the evaluation of a boolean expression (in Visual
Basic). The common issue made by those non-CS
major students is the chained-comparison-operators
such as 2 < a < 4.

We start from the simple expression with
2 values and 1 (relational) operator only. Then,
the complex one consists of a number of simple
expressions that are connected with “AND”,

“OR”, and/or “NOT”. After the precedence order
is introduced, a student should be able to evaluate an
expression like “NOT a > 2 OR a < 7 AND a > 3 + 2
× (-2 + 3)” (by given a value of variable a).
4.2 Tracing of If-else and If statements
In this phase, the students need to know the result from
a given program with the If-else and/or If statements.
The confusion might by raised when the curly braces
are omitted due to the use of the single line command
in action(s).

We test our students with the nested If-else/If
structure. Each test point is encoded in the binary
format in bits, say with a label 1, 2, 4, 8,… then, an
addition is applied at each place, just simply adding
such a label to the test variable. After that, each addition
at the precise moment of execution time can be read
from the final value of this variable. The computer’s
result will be compared with the student analysis, in
order to help student to ensure the reaching and the
sequence of these test points in the execution. An
example of this kind of testing program can be seen in
the following.

x = 90

y = 0

if x < 60 then

y = y + 1

if x > 80 then

y = y + 2 (1)

else

y = y + 4

end if

end if

listbox1.Items.add(y)

To help the student successfully reach this goal, we
start from the tracing of a single If-else or If statement.
Before we test them with the above addition operations,
we can have a warming up test. Instead of using the
addition, an assignment is adopted, which relies on the
final value update only. That is, replace each “y = y +”
by “y=” in the above.
4.3 What is that missing (relational) operator?
From this phase, we start to build up students’
programming skills. We ask student to give the right
operator in a simple boolean expression for the test part
in a single If-else/If statement.

We provide students with a five-steps development
pro- cedure. The details can be seen in Algorithm 1.

Algorithm 1: Decision structure development.
(1) Determine whether it is a problem with 2

exclusive cases only (i.e., either or but not both). So,
the problem can be solved with a single If-else/If
statement.

(2) Implement each case in different action parts.
(3) Identify the situation values for each case

selection.
(4) Make a boolean expression so that all situation

values for Action 1 will lead to evaluation value true.
(5) Verify whether all situation values for Action 2

will lead to the evaluation value false. Otherwise, go
back the above step 4.

In step 1, the target problem is ensured to solve with
the syntax of If-else/If statement in Fig. 1 (a). In step
2, two actions are implemented, one for each case. In
step 3, the condition to select each case is interpreted
with the values that can be accepted by the computer.
Then, in step 4, the boolean expression is designed.
It aims to a true field that contains all the options to
Action 1 (according to the situation values). In step 5,
a false field that contains all the options to Action 2 is
verified with the boolean expression. Once the boolean

第 4 期 55专题策划（Special Section）No. 4

expression passes the checks in both steps 4 and 5, its
functionality as the test part in the If-else/If statement
can be guaranteed correct.

For the above program in Fig. 1 (b), we can ensure
that the exclusive pass/fail can be developed into a
single If-else/If statement. The action of each case, such
as screen display “Congratulations” for those students
who pass the test, can be implemented. It is easy to
determine the situation values for the passed case when
the student “grade” is 60, 61, … · , or 100. In step 4 of
Alg. 1, “grade>= 59,” “grade> 59,” “grade<> 59,” and
“grade>= 60” will pass the check. However, only two
of them, “grade> 59” and “grade>= 60” pass the check
in step 5 (of Alg. 1), when the situation values for the
failed case (i.e., “grade”) is 59, 58, … , or 0. Either
one of them can be used as the required expression in
the test part. Therefore, students can avoid confusion
and ensure the code correct. That is, the aforementioned
uncertainty can be mitigated. Note that our approach
is practical since those advanced technologies in
proving the correctness of code have been transparent
to students now. But it opens a window for them to
study those advanced materials later if they are really
interested in this algorithm itself.

In this phase, students’ learning with this algorithm
is assessed in their work, by finding the missing
relational operator to complete a simple boolean
expression. For example, students will be asked to give
the identical code that prints out the same result as the
sample program in Fig. 1 (b) does. This becomes a
complete test after: ① the use of threshold value from
true field (i.e., 60) vs. the one from false field (i.e.,
59), ② a switch of variable and threshold value (e.g.,

“grade> 59” vs. “59 <grade”), ③ a switch of actions
1 and 2 (pass/fail implementations), and ④ the use
of the complement of test condition (simply adding
“NOT” ahead, e.g., “NOT(grade<= 59)” vs.“grade>

59”), in total 2×2×2×2= 16 different formats.
4.4 Development of the entire boolean expression
In this phase, students are asked to complete the test
part of a single If-else/If statement with Algorithm 1,
either in the simple format or the complex one.

For each value checked in a single expression, the
true field and the false field will be identified (in step 3
of Algorithm 1). Then, the critical value will be selected
as the threshold in the expression. For instance, 60/59
is used in the check of pass/fail, and 0/1 is used in
the check of positive/not positive. For more than one
value checked in a complex expression, the true field
needs a calculation with the intersection (“AND”)
and/or the union (“OR”), or even an intersection
distributed over the union “A AND (B OR C)” and/or a
union distributed over the intersection “A OR (B AND
C).” The false field will need a calculation with the
complement (of the true field) to ensure the coverage of
options to Action 2.

For instance, a leap year check requires the boolean
expression “year MOD 100 <> 0 AND year MOD 4 =
0 OR year MOD 400 = 0,” where MOD is the modulo
operator to get the remainder of the integer division.
This is a union distributed over the intersection.

In a simple word, if we find a range in the true field
for a checked value t, say t ∈ [x, y], the expression can
be interpreted with an intersection of the selections of
both bounds x and y, say “x ≤ t AND t ≤ y.” If the
true field is a union of two separated ranges, a union
OR is needed for a conjunct expression with the ones to
check the corresponding separated ranges in their true
field. This kind of selection on true field can be applied
in multiple layers, until approaching the target (true)
field.

For instance, to identify a given integer t as an even
number in the range from -100 to 100, but not divisible
by 3 such as 6, an expression can be written in an
intersection conjunction with three layers: “t MOD 2 =
0,” “-100 ≤ t AND t ≤ 100,” and “t MOD 3 <> 0.”
4.5 Multiple case problem is solved with If-
else/If statements
In this phase, students are required to extend the use
of If-else/If statement from a T/F case problem to the
multiple case problem.

We provide a general guidance for the students
to use the nested structure. The details are shown in
Algorithm 2.

201656
计 算 机 教 育
Computer Education

Algorithm 2: Guidance for the decision structure
development.

(1) Determine the program is a singleton-, 2-, or
multi-case problem.

(2) Use If statement (of If-else statement) to solve
the singleton-case problem (or the 2-case problem)
with Alg. 1. Then, end the entire process.

(3) Otherwise, apply the above step 2 to solve the
first case in the multi-case problem and then repeat step
1 for the rest cases.

The idea is straightforward. Simply, the situation
in the easiest selection is chosen as the target first. Its
true field will be used to determine the test part in the
exterior If-else statement. Then the rest of problem
becomes one case less and will be implemented in the
false field. This process will continue until the problem
can be simplified into a 2-case problem and solved in
one single If-else statement with Algorithm 1.

For example, the problem: “15% tip of a meal, with
the minimum $1, but cannot exceed the amount of the
meal price itself” has an easy case when tip>$1. Then,
the rest of problem can be implemented in another

If-else statement (which becomes the interior), by
checking whether a tip of $1 is over the meal price or
not. The resultant program can be seen in the following.

Tip = meal * .15

if tip > 1 then

listbox1.Items.add(tip) ’15%

else

 if meal > 1 then

 listbox1.items.add(1) ’$1

 else

 listbox1.Items.add(meal) ’ < $1

 end if

end if

Fig. 2 shows the overall picture of development for
all kinds of decision problems (i.e., singleton-, 2-, and
multi-case problems).

5 Result from Class Observation

5.1 Rationales and consequences at the technical
level
After students walked through the above 5 phases in

Repeat the above process for each sub−part
until the part of program is not optional

Multiple (>2) cases

Select the 1st case
on focus (mutually
exclusive with others)

True/False cases Single Option
(Conditional)

Select the true field
case for focus

Analysis
Design

Determine the situation (in values)
for the selected case or option

Coding

Determine the test expression so that it will
be true for any situtation_ (in values)of the

Determine the if−else statement Determine the if (no else) statement

failed in
the check

 Check if any other situation value will not make the test evaluation true, in order to avoid any unexpected execution of selected case

Testing & Verification

passed

END

selected case

Fig. 2 Activity diagram of programming with the If-else/If statement.

(2)

第 4 期 57专题策划（Special Section）No. 4

Fig. 3 A sample VB development for multiple case problem.

Call Numbers

100 to 199
200 to 500 and over 900
501 to 900 except 700 to 750
700 to 750

Location

basement
main floor
upper floor
archives

if num >= 100 and num <=199 then

Output.text = "basement"

else

if num >=200 and num <= 500 or num > 900 then

Output.text = "main floor"

else

if (num >= 501 and num <700) or (num > 750 and num <=900) then

Output.text = "upper floor"

else

Output.text = "archives"

end if

end if

end if

90
80
70
60
50
40
30

Pe
rc

en
ta

ge
 g

ro
w

th
 /

%

20
10
0 Traditional training Training with uncertainty

avoidance

classes, they obtain the skills and knowledge to solve
those challenging problems left in the textbook. For
instance, Fig. 3 shows an example of the multiple
selection program [8]. It is to print out the location of
books by given the call numbers. The development will
be initiated along the blue line in Fig. 2.

 The condition with its situation values (∈ [100,
199]) is identified for the first case in which “basement”
will be printed out. After the boolean expression is
determined in step 3 of Algorithem 2, the development
will focus on the rest of the cases. This process
(highlighted in blue line in Fig. 2) will be repeated until
the entire problem is left in two cases: “upper floor”
and “archives.” Then, the problem is solved with the
procedure along the purple line in Fig. 2. At the end,
the final program is created.

From the guidance in Fig. 2, our students have the
clue to start their work in solving the problem. They
will not feel uncontrollable or uncertain any more.
From a test with questions in the aforementioned
levels, non-CS major students can achieve an 87%
success rate as the level we assessed in another class [9]
for major students in the ABET program. Compared
with the student outcomes before this training, the
student success rate is enhanced by up to 129% (see
this promotion from 38% to 87% in Fig. 4). This

enhancement helps WCU to prepare and promote more
mature workforce to the advanced topic courses in the
computer area.

Fig. 4 Student performance in different training processes.

Call Numbers

100 to 199
200 to 500 and over 900
501 to 900 except 700 to 750
700 to 750

Location

basement
main floor
upper floor
archives

if num >= 100 and num <=199 then

Output.text = "basement"

else

if num >=200 and num <= 500 or num > 900 then

Output.text = "main floor"

else

if (num >= 501 and num <700) or (num > 750 and num <=900) then

Output.text = "upper floor"

else

Output.text = "archives"

end if

end if

end if

90
80
70
60
50
40
30

Pe
rc

en
ta

ge
 g

ro
w

th
 /

%

20
10
0 Traditional training Training with uncertainty

avoidance

5.2 Rationales and consequences at the ped-
agogical level

Our goal is to find a practical method and help
students walk out from the uncertainty problem. As
demonstrated here, by following our guidance, students
can easily obtain the skills and knowledge needed for
the decision structure development. Our practice also
shows that this training is very quick. For non-CS
majors, it may take only 2 weeks to wrap up everything
in the chapter of this decision making. When it is
extended to the training for CS majors, this work can
be done in one week [9].

With the enhancement of student success shown
in Fig. 4, our general education in CSC115 can hold
a pretty high retention rate of non-CS majors in our
computer classes, avoiding students dropping their
training opportunity in the middle.

6 Conclusion

The specified uncertainty problem in teaching trainees
who have little experience with the program correctness
is of intrinsic interest because of its economic
importance and potential market value. It is clear that
computer science certificate programs are used in many
places. These programs vary by language, application,
and teaching method.

201658
计 算 机 教 育
Computer Education

In this paper, we have shown our training with the
uncertainty avoidance. This guides the students to build
programs with the If-else/If statements. This guidance
also very effectively helps to ensure the program
correctness and speeds up the development, especially
for those programmers who lack enough background
of the formal methods. Its reuse is not only limited to
the trainees to develop different programs, but also
extended to trainers who will like to repeat the success
of programmer training.

Our search did not yield any complete comparison.
Based on the discussion above, it is clear that learning
programming easily and quickly with the use of this
proposed education model works better with practice.

References
[1] National Centers of Academic Excellence in Information

Assurance (IA)/Cyber Defense (CD)[EB/OL]. [2016-01-18].
https://www.nsa.gov/ia/academic_outreach/nat_cae/.

[2] National Security Telecommunications and Information

规避编程过程中的不确定性
——一种新的适用于通识课程的教学方法

(Department of Computer Science, Information Security Center, West Chester University, West Chester, PA 19383, USA)

摘 要：针对非计算机专业学生数学和计算机编程薄弱的问题，介绍一个让学生快速掌握决策结构

（If-else/If 语句）的教学方法。文章演示如何在 CSC115 这一门通识课中应用该方法，帮助这些基础不

够的学生跨越学习过程中的种种不同的疑惑，从而迅速提升学生识习判断语句后的编程技巧。和其他

方法（诸如传统的积累方法）不同，该方法更注重循序渐进地对关键技术点进行讲解，以期这些学生

能在现有的技术技能基础上理解和执行。这样，学生的学习更加有效和快速。

关键词：认证课程；教学模块和经验；计算机入门教学中的不确定性

Dr. Zhen J iang r ece ived BS
degree from Shanghai Jiaotong
University, China, in 1992, Master
degree from Nanjing University,
China, in 1998, and PhD degree
from Florida Atlantic University,
USA, in 2002. Currently, he is
associate professor of Computer
Science Department at West Chester

University of Pennsylvania (WCU) and the directorate of
National Security Agency (NSA) certificated Information
Security Center at WCU, and an adjunct professor of

Temple University (2012-present). His research interests
are in the area of information system development
and wireless communication. He won the best paper
award in the area of protocols and algorithms in the 7th
IEEE International Conference on Mobile Ad-hoc and
Sensor Systems, 2010. Dr. Jiang is also active in many
committees, and holds membership in IEEE and ACM
where he is involved in the organization of many of their
conferences and workshops.

zjiang@wcupa.edu.

System Security (NSTISS). National Training Standard for
Information Systems Security[EB/OL]. [2016-01-18]. (1994-
06-20).http://www.ecs.csus.edu/csc/iac/4011.pdf.

[3] CSC110 & CSC115, General Education Courses for non-
CS Majors, Computer Science Department, West Chester
University[EB/OL]. [2016-01-18]. http://www.wcupa.edu/-
information/official.documents/undergrad.Catalog/compsci.
htm.

[4] CSC115-Introducation to Computer Programming, special
session of Matlab for non-CS majors, Computer Science
Department, West Chester University[EB/OL]. [2016-01-18].
http://www.cs.wcupa.edu/zjiang/matlabindex.htm.

[5] Curricular with the empahsis on secruity, Computer Science
Department, West Chester University[EB/OL]. [2016-01-18]
http://www.cs.wcupa.edu/isc/curricular.html.

[6] Programcorrectness[EB/OL].[2016-01-18].http://www.
bowdoin.edu/~allen/courses/cs260/readings/ch12.pdf.

[7] ACM/IEEE-CS Computer Science Curricula 2013[EB/OL].
[2016-01-18] (2013-12-20). http://www.acm.org/education/
CS2013-final-report.pdf.

[8] Schneider D. Essentials of Visual Basic 6.0 Programming[M].
London: Pearson, 1998.

[9] CSC 141 Computer Science I, Computer Science Dept.,
West Chester University[EB/OL]. [2016-01-18]. http://www.
cs.wcupa.edu/zjiang/csc141index.htm.

	West Chester University
	Digital Commons @ West Chester University
	4-10-2016

	Uncertainty Avoidance—A New Teaching/ Learning Method for an Introductory Programming Course
	Zhen Jiang
	Recommended Citation

	tmp.1489074252.pdf.Gx808

