West Chester University
Digital Commons @ West Chester University

Computer Science College of Arts & Sciences

8-2015

HAEP: Hospital Assignment for Emergency
Patients in a Big City

Peng Liu
Hangzhou Dianzi University, China

Biao Xu
Hangzhou Dianzi University, China

Zhen Jiang
West Chester University of Pennsylvania, zjiang@wcupa.edu

Jie Wu
Temple University

Follow this and additional works at: http://digitalcommons.wcupa.edu/compsci_facpub

b Part of the Computer Sciences Commons

Recommended Citation

P.Liu, B. Xu, Z. Jiang, and J. Wu, ' * HAEP: Hospital Assignment for emergency Patients in a Big City", the 24th IEEE International
Conference on Computer Communications and Networks, August 3-6, Las Vegas, NV, 20135.

This Conference Proceeding is brought to you for free and open access by the College of Arts & Sciences at Digital Commons @ West Chester
University. It has been accepted for inclusion in Computer Science by an authorized administrator of Digital Commons @ West Chester University. For

more information, please contact wcressler@wcupa.edu.


http://digitalcommons.wcupa.edu?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/cas?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wcressler@wcupa.edu

HAEP: Hospital Assignment for Emergency
Patients 1n a Big City
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TDept. of Computer Science, West Chester University, USA
IDept. of Computer and Information Sciences, Temple University, USA

Abstract—In the largely populated city of a developing country,
the ambulance service usually sends an emergent patient to
the available hospital with shortest pre-consultation delay. The
problem is, a life-critical patient may encounter the lack of
treatment resource, such as sickbed, in desired hospitals, and
the delay to a next appropriate hospital would cause his death,
because non-critical patients already occupied the resources. In
the worst case, the service encountering a catastrophe may hold
hundreds of people on their way to the hospital and require
sickbeds be reserved in advance. In this paper, we propose
a resource allocation to balance delay in sending patients to
hospitals. We extend the scheme to consider sickbed reservation
along the time scale by estimating from the past records in
history. As a result, the occupancy is balanced in order to reduce
the risk of life-critical patients being delayed. Then we develop an
in-hospital waiting queue to keep serious patients waiting locally,
when it costs more to reach another available hospital. Simulation
results show the substantial improvement of our approach in
average delay and number of failure-of-assignment.

Index Terms—Ambulance service, resource allocation, bipartite
matching, wireless ad-hoc network.

I. INTRODUCTION

Indicated by [1], pre-consultation is one of the most im-
portant facts of delay in emergency treatment in addition to
transportation time of ambulances. After that, an emergent
patient would be assigned a sickbed and a doctor for next
step treatment. In China and India [2][3], when there are
not enough sickbeds, some life-critical patients would die,
which also leads to patient-doctor dispute [4]. Traditional local
greedy patient-hospital assignment methods, which assign a
patient to the available hospital with shortest delay in a first-
come-first-serve (FCFS) manner. The problem is, a life-critical
patient may encounter non-vacancy of sickbeds in nearby
hospitals, which have been occupied by non-critical patients,
forcing an ambulance choose a further hospital and causing
deadly delay [5]. This is either because non-critical patients
have smaller delay, or due to their earlier appearances before
life-critical patients. In an outburst of emergent patients [6], the
amount could be far more beyond the hospital accommodation.
Therefore, we must balance the average delay of each patient
and reserve some space for life-critical patients in advance.

In this paper, we propose a hospital assignment for emergent
patients in a big city, denoted by HAEP, to minimize the
average delay for sending a patient to a hospital. As a result,
an ambulance can obtain a reserved sickbed in a certain

hospital within limited distance without continuously waiting
for pre-consultation. In this way, many life critical situation
can be treated in the limited time. We take advantage of the
recent technical advances in wireless networks and vehicular
networks [7][8] to collect the real time information from
hospitals and patients, and to solve the above optimization
problem in a way that is derived from the Hungarian algo-
rithm [9]. In our system, there are three kinds of patients,
namely, life-critical, serious and cared patients. Two kinds of
hospitals, i.e., premium and primitive hospitals are considered,
where primitive hospitals can only treat non-critical patients.
Furthermore, the occupied bed is not preemptable regardless
life-critical or not, due to patient-doctor dispute. To avoid
the situation of lack-of-bed, a number of preserved beds are
set aside for life-critical patients, who are diagnosed by the
ambulance. In our paper, the preserved beds are calculated
based on history records. We propose our solution on the
extension of Maximum Weight Bipartite Matching [10], a
problem to assignment n resource to m resource requestors.
We assign n patients to m hospitals with capacity C' at each
hospital, and provide the preserving sickbeds and waiting
queue along the time scale. Our contribution is threefold:

1) We propose a new assignment to balance the bed re-
quirement of life-critical and non-critical patients with
the purpose to reduce the delay of treatment for life-
critical patient as well as the average delay for all
patients.

2) We extend the solution from Hungarian algorithm, with
the capacity and consideration of reservation along the
time scale, then the application on cases of inadequate
resources.

3) We simulate a real scenario of patient assignment in
Shanghai [11]. The experimental results derived from
real trace data show our substantial improvement in
delay and failure-of-assignment in terms of their impact
on efficient treatment on life-critical patients.

II. TARGET PROBLEM AND RELATED WORKS

In this section, we discuss the problem in existing system in
the ambulance services. Greedy algorithms are often used in
resource allocation problems. When the constraints determine
a polymatroid and the objective is linear, the greedy procedure
results in an optimal solution [12]. However, most current



research work ignores the fact that all the requests take place
along the time scale which is not an one-time optimization
problem or resource assignment. M. Xu studied another in-
teresting phenomenon that service delay for non-emergent
patients will be significantly affected due to arrival of emergent
patients [13]. They conducted a retrospective study in real
trace of a large hospital in Hong Kong and estimated waiting
time and length of stay for individual non-emergent patients
as a function of the presence of emergent patients and other
related factors. The study convinces us that the competition of
critical and non-critical patients must be carefully addressed.

As demonstrated in Fig. 1, there are two hospitals, in which
a is premium hospital and b is primitive hospital. There are
also two patients in which 1 is a non-critical patient and 2 is a
life-critical patient. We use number:time in the patient ellipse
to show patient number and his appearance time. The weight in
the arrow denotes the delay. Assume available capacity in each
hospital is 1, requests are submitted from patient 1 and 2 at
time O as seen in Fig.1(a). They will compete for a, according
to the FCFS greedy algorithm, 1 will be assigned to a since it
has smallest delay, leaving 2 no place to go. As the resource
is enough for both patients, the best solution is to assign 1 to
b, and 2 to a. In Fig.1(b), when two patients raise requests
one after another, FCFS results 1 occuping a although delay
of 1 is greater than that of 2, and 2 has no hospital to go. The
desired assignment is indicated in Fig.1(b).
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Fig. 1. A demonstration of patients and hospitals assignment

We assume hospitals have fixed locations and patients
will appear anywhere to call ambulance so that localizing
resources [14][15] can not be used here to solve the problem.
Through route planning or traffic control, we assume there’s
no extra delay in taking patient to hospitals [16][17][18],
so that the delay can be calculated based on the distance
and pre-consultation for any hospitals. Also, the resource
allocation problem inside the hospitals are addressed in many
literature, such as operation room planning [19], admission
arrangement [20], improving use of Computed Tomography
Facilities [21], and surgery scheduling [22], which enables
us to study historic records and model capability of available
beds. We also consider the ability of different hospitals to
treat different kind of patients. Hospitals can be categorized
into different classes according to their ability of medical
care. Therefore, the problem becomes the one with multiple

kinds of resources (each has different capacity) and multiple
kinds of requesters, which includes the consideration of future
reservation along the time scale.

In this paper, we solve the optimized resource allocation
problem using bipartite matching in [9], first to balance the
requirements among critical and non-critical patients in terms
of average delay, then to develop a preservation-based method
on top of the bipartite matching along the time scale for life-
critical patients, finally to introduce local waiting queue for
serious patients. The number of available beds are estimated
using possibility observation and history statistics. The waiting
queue is build-up by leveraging local waiting time against re-
assignment cost. The proposed method will greatly balance
the need of both life-critical and non-critical patients along
the time scale.

III. SYSTEM MODEL

In our system, Patients, Hospitals and the Service Center
are three main components. Ambulance can send the request
to the Service Center via wireless Ad Hoc networks or
cellular networks. Hospitals count vacancy and estimate the
capacity growth with the advanced technology of [7][8]. All
the ambulances are equipped with on-vehicle communication
devices and can be guided by the Service Center to transport
patients to the target hospital.

Tab.I summarizes all of the notations used in this paper,
which will be explained in the following. There are three
kinds of patients: life-critical, serious, and cared. Denote
z; € Cp C X, as the ith critical patient, z; € S; C X,
as jth serious patient, and x; € N, C X, as kth cared
patients. There are also two kinds of hospitals, i.e., HY
means ¢th premium hospitals and Hf means jth primitive
hospitals. As we consider the time scale, the in and out of
patients from hospital y could be monitored, managed, and
predicted, thus capacity of sickbeds at ¢ > 0, denoted as C?,
is calculated based on the prediction of patient-leaving amount
and allocation at round ¢. Especially, when ¢ = 0, C’S = C,y.
In our method, we also predict the amount of critical patients
in the future time slice. Since critical patients can appear for
many reasons, e.g., a burst of a serious disease, a severe
traffic accident, etc, although there are some mathematic
tools [23][24] to estimate one kind of situation, it is hard to
estimate superimposed situations. However, there are two key
facts that we could use. First is that there will be regular days
and peak days regarding the burst rate of critical patients due
to epidemic seasons, holidays, or bad weather. Second, no
matter the accident or disease, there is always a trend rather
than sporadic ups and downs. Therefore, we can use the last
three data to predict the future possibility. Our method can be
described in two steps, i.e., cost matrix build-up, and hospital
assignment.

The goal of the paper is to assign each proposed patient
€ X, X =C,US, UN, to a proper hospital € H H =
HP U HP, so that the total delay (from the time a patient
is picked up by an ambulance, waiting at hospitals, until
he gets treatment in a hospital). By giving a critical patient



TABLE I

HOTATIONS — _ _
X patient set X = C, US, UN, = {1,2,3, -} :
| X | total number of patients (€ X) in schedule Smous
Y hospitals Y = H” U HP = {a,b,c,-- -} @
Y | number of in-patient beds me rtcal Coa
Cj( available beds (also called beds capacity) of y € Y —
where X € {C"L7 S‘,L.7 NL} Capacm ata
premium hospital
R(z,y) | cost (<0) for z € X toreach y € Y in terms of elapsed
time where “—” indicates an initial/unreachable status . Shared . Reservered m Wait quen
bipartite matching between z € X and y € Y where 1 capacity capacity
m(z,y) | denotes a saturated assignment, O denotes a possible
assignment, and “—” indicates not reachable currently Fig. 2. Capacity illustration
L(v) labeling function of Hungarian algorithm [9], v € X UY
L' (v) previous record of L for any given v € X UY TABLE II
e the difference between L(v) and L'(v) each time A SIMPLE EXAMPLE OF PATIENTS REQUESTS
S patient set in the current consideration of allocation, C X
hospitals (C V) that are reachable by patients € S, [ patient || requested assignment time [ situation | if no vacancy ||
N(S) or arriving), i.e., {j | 3m(i,j) =0 or 1} 1 0 Cared no wait
common beds available at a hospital, that could be assigned 2 0 Cared no wait
@ to all types of patients, say y C Y, that have bed(s), 3 1 Serious wait
denoted by @y, ie, {y | @y =Cy =3 cx m(z,y)} 4 1 Tife-Critical | no wait
® Availability of persevered beds for critical patients
at a hospital, e.g., ®y = R;
® Availability of waiting queue for serious patients consider the extension of capacity to bipartite matching, then
at a hospital, e.g., Wy = wg . . . .
" - - - the optimization across adjacent time periods. Based on the
EY an alternating tree [9] derived from m, with the root w, . . . R .
simply called E-tree estimated rate of critical patients that will enter the hospital

more weight in delay cost, our method can balance the
requirements between life-critical and non-critical patients.
The impact to patient treatment is also measured by the failure-
of-assignment of critical patients. Existing research utilizing
bipartite matching often formalizes problems as maximum-
weighted matching [10], while this problem is a minimum-
weighted matching. By setting the delay cost table in [9] to
its contrariety, such as R(z,y) = —cost(x,y), our minimal
delay problem could be implemented as max-weight matching.
Inherited from the bipartite matching, we use matrix m to
indicate whether there is an assignment from patient x to
hospital y, e.g., m(z,y) = 0,1. Then we formalize the
problem as follows:

max v ZyGY ZO§t<oo R(z,y)m(z,y)

s.t. every m(z,y) =0, 1, or “—” i)

> ey m(z,y) =1 for every x € X )

Ywex M (x,y) < Cf for every y € Y and any t i)

[T

indicates an initial or unreachable status. Constraint
i) ensures the sickbed assignment as a bipartite matching.
Constraint ii) guarantees such an assignment without double-
assignment. Constraint iii) asserts the use of resources under
the capacity constraint. The problem cannot be solved by min-
imizing average delay in each patient level, but to minimize
average delay for all patients, especially between non-critical
and serious.

When a hospital could have multiple capacities and more
than one type of patients, the problem becomes complicated,
since the current optimal does not mean global optimal. As
shown in Fig. 2, different patients have different view of
capacity of a premium hospital. In our method, we first

in the near future, we set up preservation in our algorithm
HAEP (indicated as R in Fig. 2) to optimize allocation across
time periods. Furthermore, for patients in serious condition,
we arrange a special waiting room to have them stay rather
than ask them to go (indicated as w in Fig. 2, capacity is based
on the number of patients leaving the hospital and time cost
to another nearest hospital).

IV. METHOD TO SOLVE MULTI-DIMENSION HOSPITAL
ASSIGNMENT

A. Cost matrix build-up

The basic requirement of bipartite matching is the build-up
of cost matrix. In our scenario, the main cost is the response
time from the ambulance submitting a request until the patient
successfully checks in at a hospital. It is composed of two
parts, one is the transportation time from where the patient is to
the location of the destination hospital. The other is the waiting
time at the destination hospital, which is necessary. To simplify
the model, we define Euclidean distance between them as the
metric of transportation time. In practice, the transportation
time can be controlled [16][17][18] so that this will not affect
the proposed method.

We show an example in Shanghai as indicated in Fig. 3 and
and table II. To quickly simplify the algorithm, we could use
grid to achieve the same goal. We first divide the whole region
into small grids. The size of the grids are closely related to the
organization of the city, such as by living area, by postcode and
so on. With grid, we can easily find out the hospital sequence
for any grid according to distance.

After grid participation from Fig.3, we get Fig.4. Then
we can easily get the cost matrix as seen in the equation.
As indicated here, for each time slot we can get one cost
matrix where “-” indicates an impossible reach from patient to
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hospital. The initial capacity (C,, Cy, C., Cy) at each hospital
is (1,0,2,1).
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For FCFS schedule, at slot 0, patient 1 will be allocated to
hospital a, patient 2 will be allocated to hospital c. At slot 1,
the capacity of each hospital (C,,Cy, C.,Cy) changes from
(1,0,2,1) to (0,0, 1,1). Therefore, conflict appears in which
two emergent patients cannot be assigned to close hospitals.
More terribly, patient 4 will have no hospital in which to stay,
since the last eligible hospital d is assigned to patient 3 since
he is earlier than patient 4.

B. Hospital assignment

For regular matching algorithm, at each time slot, there is
an augment path found so that 1 and 2, 3 and 4 will switch
assignments to get an optimization. Finally, after the switch,
patient 4 could find a hospital with time cost 6. It is local
optimal; however, in the view of slot 0 and slot 1 together, the
assignment is not optimal.

In our algorithm, assume that there is a reservation of 1
bed for critical patients at hospital a at slot 0. Therefore,
the capacity of (Cy, Cy,C.,Cy) that the two patients see is

(0,0,2,1). After applying a matching algorithm, the result of
slot 0 is 1 to c and 2 to c.

At slot 1, consider the patient leaving rate at hospital b:
it allows a waiting queue of 1 room, therefore, the capacity
of (Cq,Cyp,Ce,Cy) that the serious and critical patient see
is (0,1,1,0) and (1,—,—,0), so the matching would be
as shown in Fig.5. The total cost of our algorithm is 6 +
waitingtime(lessthanl), while that of the regular matching
is 13, and FCFS has no answer.
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Fig. 5. Our matching at slot to and ¢

Non-critical patients can switch with critical patients, but
with limitations. In the experiment, we set the cost of life-
critical patient three times as the same distance and non-
critical patient. The value could be adjusted when applying
the framework to practice. The assignment problem is actually
a specific capacity to a different requester. As seen in Fig.2,
each category of patients can use a different portion of the
entire capacity of a hospital, which is designed to meet the
requirement of each patient.

Reserved capacity is an evolutional parameter, which can
only accommodate critical patients since there are less appli-
cable hospitals, and critical patients obviously cannot wait.
Over-prediction will cause waste, and less than enough will
cause inefficiency. Wait-allowed capacity is a small list which
is related to the hospital-leaving rate. For serious patients,
the earlier the treatment, the better; therefore, it is good to
have them have some basic treatment and to wait in a nearby
hospital when it will cost additional time to reach a further
hospital. The capacity of a queue in a waiting room is based
on the number of patients leaving the hospital and the time
cost to another nearest hospital. A non-critical patient is not
allowed to wait, and will always be sent to the nearest hospital
with capacity.

The schedule is expected to apply whenever there is a new
request. However, to avoid local optimization, the method
needs more requests together to perform the schedule. A time
slice 0 is adopted with trade-off of between waiting time and
global cost. If the § is too large, it will incur additional waiting
time. If it is too small, the local optimization will incur global
cost. We have the following definition:



Definition 1: Any x € X that has not seized the reservation
is called unsaturated, and it has m(x,y) # 1 for every y € Y.
Any y €'Y still available for allocation is called unsaturated
and it has ) . m(z,y) < Cy.

Definition 2: Any y € Y still available for allocation is
called available and @y or ®y or Wy > 0 according to
category of v € S where m(v,y) = 0).

Our algorithm is shown as Alg.1. The first phase is to
initialize cost matrix R, matching matrix m, and label L(v).
The second phase is to check if the matching could stop and
converge otherwise to build a new augmenting tree with root
z. The remaining phases are similar to the Hungarian algo-
rithm, except we use Def. 2 to implement multi-dimensional
matching, and we alter the table construction phase to apply
on multiple capacities.

For critical patients, first use reserved capacity. For any
Cy > 1, multiple reservations are allowed on hospital y.
Any existing reservation will be added into our records (E-
tree and S), for later reservation shuffle with the augment
path. This phase of hospital matching will continue until all
patients have been checked under the capacity constraint. For
serious and cared patients, they can only see the capacity at
premium hospitals after removing critical preservation. For
serious patients, they will be allowed to stay at a waiting list
before getting a bed in a hospital which is denoted as @y.
All the capacity checks imply the above strategy. The entire
process will stop at phase 2 when every patient finds its target
hospital or all the beds are allocated (the method will stop
when the sum of cost of allocated patients and un-allocated
patients is minimal). Eq. 3 is used to calculate « for the greedy
progress along the time scale of patient arrivals.

a = mingeg yey\r{L(z) + L(y) — R(z,y)} 3)
L'(v)—a, ifvelS
L'(v) + a, if v € Y has been considered
L(v) = before for S, ie., {y € Y| 4)
dm(x,y) = 1 where x € X'}
L' (v), otherwise
_J o L(z) + L(y) = R(z,y)
m(@,y) = { “—7  otherwise ©)

When there are more patients than available resources, the
original Hungarian algorithm cannot give a solution since
the result is obviously not a perfect matching. When all the
resources (say y) are allocated, there are still requesters that
remain unsaturated (say x). Therefore, in our algorithm, we
add a virtual resource hospital beyond the real ones. By setting
the cost to be a very big number for each patient to reach along
with infinite capacities, our algorithm will converge and assure
an optimization for all allocated y. As indicated in equation
(6), there are two hospitals and two patients; we add virtual
hospital ¢ and a cost of 99 time units for each patient. Assume
the initial availability at each hospital a and b is (1, 0) without
virtual hospital, the matching process would be as shown in
Fig.6. Without virtual hospital c, the final assignment from the
extended Hungarian algorithm would be as left with a cost of

Algorithm 1 Hospital assignment based on Hungarian algo-
rithm with capacity and reservation
Require: X, Y, R, and C, for each y € Y
Ensure: a bipartite matching in Y for each x € X
1 Initialization (i.e., R(i,j), m(i,j), and L(v) with Eq.(3)).
2: Completion check:
For any unsaturated (Def. 1) patient x € X, prepare S,
T and E to start the matching process in the following;
otherwise, successfully end the entire process.
3: Label update for new opportunities for x to match with y
in m:
IF N(S) # T GOTO phase 4 ELSE
Update reaching opportunities of patients by (first a with
Eq.(3), and then L with Eq.(4), in order to reset m with
Eq.(5).
4: Table construction (E,m,Tand S):
Find any y € N(S)\T; IF y is available (Def. 2), an
alternating path from x (root of the tree E7) to y exists,
apply augment matching along this path as the Hungarian
algorithm, decrease capacity of y by 1, GOTO phase 2.
ELSE find all z that are matched with y, update E with
(z,y) respectively, S = SU{z}, T = T U {y}, GOTO
phase 3.

2 (1 to a), while our algorithm will stop at right with a cost
of 1 (2 to a).

a b c
. 1/2 3 99
CostMatriz = 9 < 1 9 99> (6)

Fig. 6. illustration of virtual hospital

Theorem 1. The bipartite matching achieved with Alg. 1 is
optimal on total transportation time in R when each Ry is
accurate.

Proof: Alg.1 is derived from the Hungarian algorithm [10];
first, with multiple capacity, we can still guarantee optimality
since in phase 4 every possible available capacity is considered
and the multiple z assigned with y will be added to the
augmenting tree properly. According to Def.2, if the estimation
of Ry is accurate, the total cost will be minimized. As we add
virtual node, the algorithm will finally stop at phase 2, no
matter whether the resource is adequate or not. Therefore, we
have this statement proven. ]

C. Parameter formulation

The waiting capacity of a hospital, i.e., wy, is very important
to serious patients, since they could make sure they would have



beds after waiting, and get some basic treatment while waiting.
It takes extra traffic time (may be greater than the delay cost
of waiting) to get to the next hospital. The parameter wy, is
related to the hospital-leaving rate and the time to the furthest
hospital. We adopt poisson distribution [19], and find A using
the statistics. Since the average in—patier}gt hclzurs dy, is in a

A
Poisson distribution [14] as P(k,\) = e'
most hospitals are running in a high occupancy, we could get
wy as below:

and normally

> P, % x Min{Ty}) > 0.8 (7)
— k

Where Min{T}} denotes the distance (represented by time)
of nearest hospital to hospital y;. Cy and dj, denote the capac-
ity and average in-patient time of y;, respectively. Namely, we
hope the total possibility of leaving wy, patients in Min{T}}
time is larger than 80%. The larger the Min{T}} is, the larger
the wy. It is normal that patients would want to wait at the
closer hospital, as opposed to going to the further one.

The reservation number of beds Ry, at hospital y, would
greatly affect the performance of the framework. Cared pa-
tients can only use rest capacity excluding R, and critical
patients will first use R then the rest of capacity. In our paper,
we suggest a method that calculates Ry, in a less complex way.
Since the reservation depends on the distribution of in-patient
possibility, a concrete method could be adopted according to a
different realistic model. Here, we assume that the number of
critical patients in a region is always smaller than the capacity
of a premium hospital.

Most diseases have their unique distribution and disciplinar-
ian. For any single illness, ARIMA [23] can be used to
estimate the happen rate, or Markov process [24]. However,
the in-patient requirements are also from incidents such as a
car crash, fire, alcohol poisoning, etc. These incidents vary, but
will remain stable in a period of time. Illness and incidents,
altogether, will make an orderliness along the time scale, but
will be smooth in a divided period of time. The goal is to try
to match the reservation beds with the critical situations along
a month scale.

The idea is simple, if we observe a waste of additional
reservation beds, we cut the budget. If we continually en-
counter insufficient reservations, we increase the budget. The
method is not as accurate as the ARIMA or Markov process,
but it requires less training and history data, as well as a great
reduction of computational complexity, while the accuracy is
very acceptable. We record the last three data sets as history
to estimate the future. Accuracy could be improved with a
higher sample rate, and more history data. For example, let 7;
denote the 7th amount of in-patient critical patients, then the
estimation of next time-slot’s reservation could be calculated
as

ax (ry—ri—1) + B x (ri-1 —1i—2)

Ry =mi+ 9

+7 )
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Fig. 7. patient number varies along time

Here, «, 3, and ~ are all a constant coefficient where o +
[ =1. o and 3 are the weight of the history data, where they
are set to 0.6 and 0.4 in our experiment. vy is a compensatory
factor, which is set to 0 in our experiment.

V. EXPERIMENTAL EVALUATION AND SCENARIO
OVERVIEW

We evaluate our algorithm using simulations, but the data
are derived from real statistics [20]. Here is the simulation
parameter setup: a 4 x 4 grid (adjacent grid’s distance is 5
minutes) with 4 hospitals (2 premium, 2 primitive), each hav-
ing 120 beds. The average in-hospital time is 24 hours (shrink
pro rata according to 10 days, on average, in practice [11]).
We use 15 minutes as a schedule time slot. We use a Poisson
distribution function to generate = patients including critical,
serious, and non-critical every 15 minutes, and distribute them
to 16 grids randomly. Generate data set, record the cost matrix.
The patient number along the time scale is shown in Fig.7.
Here, we use unit number rather than real number of patients.
Therefore, one unit of patients could be hundreds of patients
in a real scenario.

The first competitor is a local heuristic method denoted
by FCFS [12]. Whenever there is a new request, it will
be assigned to the nearest appropriate hospital, i.e., a critical
patient will be sent to a nearest premium hospital, while a
non-critical patient will be sent to any nearest hospital with
vacancy. The second competitor is a basic bipartite matching
method [10] denoted by K — M which divides time into slots,
and uses bipartite matching to achieve global optimization.
The third method is FFCFS with preservation, denoted as
FCFS — res. The fourth method is our method which uses
a critical safe reservation on top of K — M, denoted by
HAEP. Apply FCFS, K — M and our algorithm HAEP
onto the same data set. Run simulations for 24 hours, and
repeat 10 times. If any of the algorithm could not allocate a
critical patient, increase failure-of-assignment by 1 and add the
maximum cost of the grid. Every 15 minutes, generate patients
and try to assign them in 4 hospitals. To lever the different
emergency situations, we set the coefficients as 1:1:3 and
2:1:3 for critical, serious, non-critical patients, respectively,
as regular and peak days.

Fig.7 shows the dynamic of patient number in each round.
The difference is that the number of critical patients rises one
time in Fig.7(b) against Fig.7(a). All the dynamics abide by
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the A of the Poisson distribution.

From Fig.8, we could compare the round waiting time for
4 methods. The costs vary since there are different patient
requests in each round. F'C'F'S will cost more than K — M,
FCFS—resand HAEP. K — M will be better than FCF'S,
but not as good as FCFS —res and HAEP. They will give
more benefit to serious and critical patients so that some non-
critical patients will be affected. HAFE P is obviously the best.

We repeat the test 10 times so that we get more visual facts.
The total cost of four methods, can be seen in Fig.9. HAEP,
denoted by a light blue line is about 25% less than K — M,
which implies that we both have a good total cost, and better
cares for critical patients. FCF'S — res also has preservation,
so the total cost is a little bit lower than K — M. The more
the critical patients, the better the performance of our method
HAEP.

As a distribution of patients in each hospital, shown in
Fig.10, FCF'S has nearly average distribution due to the
fact that it is only based on distance. FFCF'S — res and
HAEP consider the requirements from critical patients so
that premium hospital a and d gets more patients in. HAEP
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Fig. 12. distribution of patients to hospitals

uses the reservation so that some noncritical patients will go
further, and primitive hospital will get more patients. However,
the distribution also relies on the patients’ distribution in grids.

When there are not enough resource (beds), there are always
some patients that cannot be assigned to a hospital. We
compare the total mismatch times of four algorithms, as shown
in Fig.11. As for HAEP, critical patients are the first to
consider; therefore, some non-critical patients maybe become
mismatched. That is why the improvement is not very obvious.
However, if we look into the details, H AE P will have more
critical patients scheduled than will the other two methods.

We also consider the failure-of-assignment of critical and
serious patients. This is because the incoming of patients is
based on the possibility that there could be times that the total
resource cannot meet the requirement. Under this situation,
we compare the total number of failure-of-assignment of
four methods as shown in Fig.12. HAEP definitely gets the
minimum failure-of-assignment.

We also study the impact on our method using different
reservation percentages. From Fig.13, we illustrate the unsuc-
cessful assuagement and total cost change according to preser-
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vation adjustment. The experiment is based on one extremely
completive test instance of 96 rounds. We name our choice
as 100%, and decrease/increase accordingly. The unsuccessful
assignments of critical patients decrease with the increasing
of preservation beds, but the unsuccessful assignments of all
patients are increasing in Fig.13(a). Meanwhile, the total cost
increases very fast when the preservation is added beyond our
value, as shown in Fig.13(b). It is obviously a tradeoff between
total cost and benefit of critical patients to find best point of
preservation size.

Our observations are summarized as follows: 1) From Fig.9,
our results show that the HAEP always outperforms FCFS,
FCFS-res and K-M, no matter in regular days or peak days.
During regular days, the critical patients are not many, so that
the competition is not serious. FCFS has the worst perfor-
mance while FCFS-res and K-M are quite similar. During
peak days, consider the ratio: HAEP is 30% better than FCFS
and 16% better than K-M, and 10% better than FCFS-res.
FCFS-res is rated as the second best which means critical
patients have been well taken care of, and comprise a good
portion of the total performance. 2) From Fig.12, regarding
the deathrate, our algorithm HAEP has a very low failure-of-
assignment over the other three algorithms. The FCFS is the
worst algorithm, since it does not consider the future situation
of critical patients at all. FCFS-res considers the requirement
of critical patients, so it has a good performance as well. 3)
Fig.10 shows the distribution of assigned patients. Since only
successfully assigned patients will be calculated, the figure
shows that HAEP has the best utilization of hospital beds,
while FCFES has the worst. K-M comes as the second, since it
has local optimal for each round.

VI. CONCLUSIONS

In this paper, we propose a novel emergent patient assign-
ment to minimize the average delay of patients, as well as
the amount of failure-of-assignment for critical patients in the
large city, denoted by HAEP. The framework is composed of
three components, i.e., Service Center, Patients, and Hospitals.
To avoid the disadvantage of local competition, hospitals
will submit their occupancy status while ambulances call
the Service Center to declare their requirements so that the
schedule could be done in the Service Center in a global view
manner. The solution is built on the Hungarian algorithm, with
the prediction and time scale, applied on a multi-dimension
resource and requesters. The simulation shows that our work
is very efficient compared with the three other usual methods.
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