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ABSTRACT 

 

Results concerning the global existence and uniqueness of mild solutions for a class of first-order 

abstract stochastic integro-differential equations with variable delay in a real separable Hilbert 

space in which we allow the nonlinearities at a given time t to depend not only on the state of the 

solution at time t, but also on the corresponding probability distribution at time t are established.  

The classical Lipschitz is replaced by a weaker so-called Caratheodory condition under which 

we still maintain uniqueness. The time-dependent case is discussed, as well as an extension of 

the theory to the case of a nonlocal initial condition.  Two examples illustrating the applicability 

of the general theory are provided. 
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                             variable delay; Caratheodory condition 
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1     INTRODUCTION 

We investigate the global existence and uniqueness of mild solutions for a class of abstract delay 

integro-differential stochastic evolution equations of the general form 

 

   

   

1 1

1 2 2 2
0 0

( ) ( ) , ( ( )) , ( ) , ( ( )) , ( ) ( )

( , ) , ( ( )) , ( ) ( , ) , ( ( )) , ( ) ( ) , 0 ,

,( ) , 0( )

( ) probability distribution of ( ),

t t

d x t A x t dt f t x t t dt g t x t t dW t

K t s f s x s s ds K t s g s x s s dW s dt t T

x r ttt

t x t

   

   





   

 
    

 
   



  (1.1) 

in a real separable Hilbert space H.  Here, W is a given K-valued Wiener process corresponding 

to a positive, nuclear covariance operator Q; A is a linear (possibly unbounded) operator which 

generates a strongly continuous semigroup  ( ): 0S t t  on H; 1( , )K t s  and 2 ( , )K t s  are bounded, 

linear operators on H;   2: 0, ( ) ( 1, 2)i tf T C H H i   P  and   2: 0, ( )tig T C H  P  

( ; ) ( 1, 2)BL K H i  (where K is a real separable Hilbert space and 2 ( )HP denotes a particular 

subset of probability measures on H) are given mappings;  ( ): 0t r t    is a known initial 

process with almost surely continuous sample paths, and the delay function  : 0,T   is 

measurable and satisfies ( )r t t   , for all 0 t T  . (The function spaces are made precise 

in Section 2.) 

 

Stochastic partial functional differential equations with finite delay naturally arise in the 

mathematical modeling of phenomena in the natural sciences (see [35, 39] ).  A recent survey 

article [21] recounts the work on such problems in the finite dimensional setting during the past 3 

decades.  Researchers have recently begun to extend this work to infinite dimensional stochastic 
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evolution equations with delay (see [17, 25] ).  Such work is relevant since dynamical systems 

with memory can lead to a random integro-differential equation of this type (cf. [11, 22, 23, 27]).   

 

It is known that if the nonlinearities if and ig do not depend on the probability distribution ( )t of 

the state process, then the process described by (1.1) is a standard Markov process [1].  

Numerous papers and books devoted to the formulation of theory of such equations have been 

written over the past 2 decades (see [12, 18, 22]).  The introduction of the dependence on ( )t is 

not superficial and, in fact, such problems arising in the study of diffusion processes have been 

studied extensively in the finite dimensional setting [13, 14, 28].  Ahmed and Ding [1] 

established an abstract formulation of such problems in a Hilbert space.  Subsequently, Keck and 

McKibben [24] considered a Sobolev-type variant of the equation considered in [17, 26, 32] and 

more recently, have extended this theory to a class of integro-differential stochastic evolution 

equations with finite delay related to (1.1) under Lipschitz growth conditions (see [25]).  This 

was the first attempt at developing a general theory of abstract McKean-Vlasov equations with 

delay.   

 

The results presented in the current manuscript constitute a continuation and generalization of 

those in [1, 15, 17, 20, 25, 35, 40] in two ways.  For one, we incorporate a so-called variable 

delay function (as in [17, 25]) into (1.1).  And two, more importantly, we replace the Lipschitz 

growth conditions by more general Caratheodory-type conditions of the type introduced by [31] 

and subsequently adapted in [6, 17].  The point of interest here is that the convergence scheme 

used in the proof still enables us to conclude uniqueness without any additional restriction on the 
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operator A or on the kernels.  As such, the results in the references mentioned above are 

recovered as corollaries of the main results in this manuscript. 

 

The following is the outline of the paper. First, we make precise the necessary notation, function 

spaces, and definitions, and gather certain preliminary results in Section 2. We then formulate 

the main results in Section 3, while we devote Section 4 to a discussion of some concrete 

examples. 

 

2    PRELIMINARIES 

For details of this section, we refer the reader to [12, 18, 29, 30, 34, 38] and the references 

therein. Throughout this paper, H and K shall denote real separable Hilbert spaces with 

respective norms   and 
K

 , while ( ; )BL K H denotes the space of all bounded, linear 

operators from K into H (the norm will be denoted as 
BL

 ). Let  , , P F be a complete 

probability space equipped with a normal filtration  
0tt 

F . For brevity, we suppress the 

dependence of all mappings on   throughout the manuscript. 

 

The function spaces needed in this manuscript coincide with those used in [1, 17]; we recall them 

here for convenience. First, ( )HB stands for the Borel class on H and ( )HP  represents the 

space of all probability measures defined on ( )HB  equipped with the weak convergence 

topology. Let ( ) 1 ,x x x H    and define the space  

 
2

in

( ) ( ) ( )
( ) : :  sup sup

( )
is continuous and

C x H x y H

x x y
C H H H

x x y

  
  

 

          
. 
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For 1p  , we let  

 ( ) : ( ) ( )is a signed measure on  such that p

H

p
p

s
H m H m m x m dxH  

      
  

P  , 

where ,m m m m m m      is the Jordan decomposition of m. Then, we can define the 

space 2 2( ) ( ) ( )
s

H H H
 

 P PP equipped with the metric  given by  

    1 2 1 2, sup ( ) ( ) : 1
H

C
x dx


      

 
   

 
 . 

It is has been shown that  2 ( ),H


P  is a complete metric space. The space of all continuous 

2 ( )H

P - valued measures defined on  ,r T , denoted by 2C


, is complete when equipped with 

the metric  

    1 2 1 2 1 2 2
,

, sup ( ), ( ) , ,T
t r T

D t t C


      
   

  . 

Next, let 0r   be fixed.  For a given 2 ( ; )L H   and for each 0t  , let  

   2 22: , ( ; ) ( ) ( ) , 0 and sup ( )
r s t

t t
C x r t L H x s s r s x E x s

  

 
           
 

, (2.1) 

 

We now make precise the notions of mild and strong solutions for (1.1). 

Definition 2.1  A continuous stochastic process  : 0,x T H is a mild solution of (1.1) on  0,T  if 

(i) ( )x t is measurable and t F adapted, for each  0,t T , 

(ii) 2

0

( ) , a.s. [ ],
T

x s ds P   

(iii)    1

0

( ) ( ) (0) ( ) , ( ( )), ( )
t

x t S t S t s f s x s s ds       
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(iv)  ( ) ( ), 0, a.s. [ ].x t t r t P     

Definition 2.2  A continuous stochastic process  : 0,x T H is a strong solution of (1.1) on 

 0,T  if 

(i) ( )x t is t F adapted, for each  0, ,t T  

(ii) ( ) ( ),x t D A  for almost all  0, , a.s. [ ],t T P  

(iii) 
0

( ) , a.s. [ ],
T

A x s ds P   

(iv)  1

0 0

( ) (0) ( ) , ( ( )), ( )
t t

x t A x s ds f s x s s ds        
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2 2

0 0

, ( ( )), ( ) ( ) ( , ) , ( ( )), ( )

( , ) , ( ( )), ( ) ( ) ,  0, , [ ] ,for all a.s.

s

s

t t

t

g s x s s dW s K s f x d ds

K s g x dW ds t T P

        

      

 



  
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(v) ( ) ( ), 0, a.s. [ ].x t t r t P     

Clearly, a strong solution is also a mild solution. Situations in which the converse also holds are 

discussed in [12, 20]. 

Next, if A depends on t, then (1.1) becomes 

 

   

   

1 1

1 2 2 2
0 0

( ) ( ) ( ) , ( ( )) , ( ) , ( ( )) , ( ) ( )

( , ) , ( ( )) , ( ) ( , ) , ( ( )) , ( ) ( ) , 0 ,

,( ) , 0( )

( ) probability distribution of ( ),
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d x t A t x t dt f t x t t dt g t x t t dW t

K t s f s x s s ds K t s g s x s s dW s dt t T

x r ttt

t x t

   

   





   

 
    

 
   



  (2.2) 
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where  ( ): 0A t t T  is a family of linear operators on H with domains ( ( ))D A t  such that 

( ( ))D A t D  (independent of t) which generates an evolution operator  ( , ): 0U t s s t T   of 

bounded linear operators on H satisfying the following properties: 

 ( , ) ,U t t I  for all 0 t T  , (where I is the identity operator on H),      (2.3) 

               ( , ) ( , ) ( , ) ,  0 ,for allU t r U r s U t s s r t T      (2.4) 

               ( , )U t s is strongly continuous in s on  0,T  and in t on  ,s T , (2.5) 

              
( , )
max ( , ) ,Ut s

U t s M


 for some positive constant UM ,  (2.6) 

where  ( , ): 0t s s t T     . Conditions that ensure  ( ): 0A t t T  generates such an 

evolution operator are outlined in [30]. Such conditions apply to a large class of hyperbolic and 

parabolic equations (see [30, 40]). We remark that a mild (resp. strong) solution of (2.2) on 

 0,T  is a continuous stochastic process satisfying Definition 2.1 (resp. 2.2) with ( ,0)xU t in place 

of ( )S t and ( , )xU t s in place of ( )S t s in (iii). 

 

In order to establish the main results of the manuscript, we shall need various inequalities and 

estimates.  For one, in addition to the familiar Young, Hölder, and Minkowski inequalities, the 

standard convexity-type inequality of the form  

    1 1
1. . . . . .m m

n n

m ma a n a a     , (2.7)  

where ia  is a nonnegative constant ( 1, . . . ,i n ), and ,m n , is frequently used.  Proposition 

1.9 in [20], and variations thereof (for the delay case), are used in conjunction with (2.7) to 

establish critical estimates in this manuscript. We recall it here without proof. 
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Lemma 2.3   Let  : 0, ( , )G T BL K H   be strongly measurable with 
0

( )
T

p
E G t dt   . Then, 

 2

2

2 1

0 0 0

1
( ) ( ) ( 1) ( ) ( ) ( )

2

p

p

p
pt t t

p p

GBL BL
E G s dW s p p Tr Q t E G s ds M E G s ds        , 

where 2

2

2 11
( 1) ( ) .

2

p

p

p

GM p p Tr Q T     
 

Finally, the following generalization of Theorem 2.4.3 in [29] is crucial in the proof of the main 

existence result.  Its proof follows by making natural modifications to the proof of Theorem 2.4.3 

and will be omitted. 

 

Lemma 2.4  Let F, f, g, and h be non-negative continuous functions on  0, , let ( ) 0p t   for 

all 0t  , let ( , )G t z be a non-negative continuous, monotone nondecreasing function in 0z  , 

for each 0t  , and let   be a continuous, nondecreasing function such that (0) 0  .  If 

 
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( , ( )) ( , ( ))
t t s

F t p t g t f s F s ds h s G s F s G F d ds   
  

        
   , 

for all 0 t T  , then there exists 0 T T  such that 

  ( ) ( ) ( ) ( ( ))F t a t p t r t  , 

for all 0 t T   , where  

 
0

( ) 1 ( ) ( ) exp ( ) ( )
t r

s

a t g t f s g f d ds  
 

   
 

   

and ( )r t is the maximal solution to the initial-value problem 

   
     

0

( ) ( ) , ( ) ( ) ( ( )) , ( ) ( ) ( ( )) , 0 ,

(0) 0.

t

r t h t G t a t p t r t G s a s p s r s ds t T

r

   
       

 


  (2.8) 
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3    MAIN RESULTS 

The following are the main hypotheses assumed throughout the manuscript. 

(A1)    A is the infinitesimal generator of a 0C  semigroup  ( ): 0S t t  on H . 

(A2)     1 2( , ): ( , ) ( , ): ( , ) ( , )K t s t s K t s t s BL H H     are such that 
11 ( , )

( , ) KBL H H
K t s M  

and 
22 ( , )

( , ) ,KBL H H
K t s M for all ( , )t s  , for some positive constants 

1KM and 
2KM . 

(A3)  : 0,T   is a measurable function such that ( )r t t   , for all 0 t T  . 

(A4) The initial process  is independent of W, has almost surely continuous paths, and 

2

0
( , )E     . 

(A5) 2: 0, ( )tif T C H H     P and   2: 0, ( ) ( ; ) ( 1, 2)i tg T C H BL K H i


   P  are 

tF -measurable mappings satisfying: 

(i)   There exists    :[0, ] 0, 0, (0, )Y T       such that 

 (a)        2

2 2
2 2 2 2

( )
1 1

, ( ( )) , , ( ( )) , , ,
tBL

i i
i iE f t y t z g t y t z Y t y z

 
 

 

 
  

 
  ,  

        for all ( )0 , ,tt T y C   and 2 ( ) ,z H


P   

(b)   , ,Y y z is locally integrable, for every  , 0,y z   ,  

(c)    , ,Y t    is continuous, monotone non-decreasing, and concave, for every  

0 t T  . 

(ii)  There exists  :[0, ] 0, (0, )Z T     such that  

 (a)      
2

2

1 1 2 2
1

, ( ( )) , , ( ( )) ,
i

i iE f t y t z f t y t z 



 


  
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     

  2

2
2 2

1 1 2 2 1 2 ( )
1

2
1 2 1 2 ( ) 1 2

, ( ( )) , , ( ( )) , ,

, , for all 0 , , , and , ( ) ,

tBL
i

t

i ig t y t z g t y t z Z t y y

z z t T y y C z z H



 

 





   


    



P

 

 (b)    ,Z z is locally integrable, for every  0,z   ,  

  (c)    ,Z t   is continuous, monotone non-decreasing, and concave, for every   

          0 t T  , and ( ,0) 0, for every 0 ,Z t t T    

(d)   If :[0, ] [0, )w a   is a nondecreasing, continuous function such that (0) 0w   

and 
0 0

( ) ( , ( ( ))) ( , ( ( ))) ,
t s

w t C Z s w s Z w d ds    
 

  
 
   for all 0 t a T   , 

where C is a positive constant, then 0 on  [0, ]w a . 

 

Remarks 3.1 

(i) The Principle of Uniform Boundedness ensures the existence of a positive constant SM  

such that
0
max ( )S

t T
M S t

 
 .   

(ii) There are several examples of functions Z which are natural growth conditions to impose 

upon the nonlinearities and which satisfy (A5).  For instance, 1( , ) ( ) ( ) ,pZ s z M s Z z  

for 1p  and 1M is nonnegative and continuous on  0, is easily seen to satisfy (A5).  

Also, the following example provided in [6] can be shown to satisfy (A5) using the Bihari 

inequality:   ( , ) ( ) ( ) , where 0,Z s z s z s z a   , ( ) 0s  is locally integrable, 

   : 0, 0,    is a continuous, nondecreasing function such that (0) 0, ( ) 0z    

for 0,z  and 
0

1

( )z
dz




  .  (Standard examples of ( )z are provided in [6].) 
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(iii) Condition (A5)(ii)(d) is needed in order to identify the state process with its probability 

distribution.  If the nonlinearities do not depend a priori on the probability distribution, 

this assumption can be dropped.  However, if such dependence occurs, then the following 

fact (which follows from (A5)(ii)(d)) is needed: 

 

If :[0, ] [0, )w a   is a nondecreasing, continuous function such that (0) 0w   

and
0 0

( ) ( , ( ( ))) ( , ( ( ))) ,
t s

w t C Z s w s Z w d ds      
 

    
 
   for all 0 t a T   , 

where C and   are positive constants, then there exists 0 a a  such that 

( ) ( ) on  [0, ]w t w t a  , where w  is bounded on [0, ]a independent of  . 

 

This is easily seen, in particular, for the examples of Z in (ii) above.  Indeed, in the case 

of polynomial growth, one obtains such an estimate by invoking Theorem 2.7.1 in [29], 

while an application of Theorem 3.9.5 in [29], after some manipulation, yields the 

estimate for the second example of Z.  This estimate shall be used in the proof of each 

result below. 

 

 We begin with the main result concerning the existence and uniqueness of global mild solutions 

to (1.1). 

Theorem 3.2.  If (A1) – (A5) are satisfied, then (1.1) has a unique mild solution in Tx C  with 

probability distribution 2C


  . 

Proof.  Let 2C


   be fixed.  Define the following sequence of successive approximations: 
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0

( ) (0) , 0 ,
( )

( ) , 0,

S t t T
x t

t r t




 
    

 

   

 

 

1 1 1 1

0 0

1 2 1

0 0

2 2 1

0 0

( ) (0) ( ) , ( ( )) , ( ) ( ) , ( ( )) , ( ) ( )

( ) ( , ) , ( ( )) , ( )
( )

( ) ( , ) , ( ( )) , ( ) ( ) , 0 ,

( ), 0.

n n

s

n

n

t t

t

n

t s

S t S t s f s x s s ds S t s g s x s s dW s

S t s K s f x d ds
x t

S t s K s g x dW ds t T

t r t

    

      

      



 






   



   

    



  

 

 

 

      

          

4

1

( ) (0) ( ) , 0 ,

( ) , 0.

n
i

i

S t I t t T

t r t







   

   


          (3.1) 

Define      : 0, 0, 0,Y T     by ( , ) ( , , )Y s y Y s y k  , where k is a constant independent of 

s and y.  Consider the initial-value problem 

0

0

( ) ( , ( )) ( , ( )) , 0 ,

(0) ,

t

u t C Y t u t Y s u s ds t T

u u

 
  
      

  
 

    (3.2) 

where  2

0 1 0 2 3and max ,
T

u C x C C C   (cf. (3.12)). The regularity of Y  (in (A5)) ensures 

the existence of 10 T T   such that (3.2) has a unique solution 0( ; ) ( )u u u   on  10,T . This 

fact will be needed below 

First, we assert that 

2

1
1

sup ( ) , for all 0
n

n t
x u t t T


   ,         (3.3) 

                  
2

2

1 [0, ]
sup sup ( ) ( ) (0)
n t T

n t
x S R

 
    ,            (3.4) 
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for a sufficiently large R and 2 10 T T  .  Indeed, let 10 t T   and observe that standard 

computations yield  

 

2 22

0
0

4 22 24

0
0 1

1 1sup ( )

3 sup ( ) (0) ( ) .

s t

s t

t

n
i

i

x E x s

E S s E I s



 

 

  

 

 
   

 


 (3.5) 

Applications of Hölder’s inequality, in conjunction with (A1), (A2), and Lemma 2.3, further 

yield the following estimates: 

 2

2 22

( )
0
sup ( ) (0) (0)S L

s t
E S s M 


 

 , (3.6) 

  
2 22

1 1 0
0 0

1sup ( ) , ( ( )) , ( )S
s t

t

E I s TM E f s x s s ds 
 

  , (3.7) 

  
1

2 22
2 1 0

0 0

1sup ( ) , ( ( )) , ( )S BL
s t

t

gE I s M M E g s x s s ds 
 

  , (3.8) 

  
1

2 22 2 2
3 2 0

0 0 0

1sup ( ) , ( ( )) , ( )K S
s t

t s

E I s T M M E f x d ds     
 

   , (3.9)  

  
2 2

2 22 2
4 2 0

0 0 0

1sup ( ) , ( ( )) , ( )g K S BL
s t

t s

E I s T M M M E g x d ds     
 

   . (3.10) 

Using (3.6) – (3.10) in (3.5), along with (A3) and (A5), gives rise to 

             

   

   

   

   

2 2 2

1 2 1 0 1 0

0

2 2

3 2 0 2 0

0 0

2 2

1 2 0 3 0( ) ( )
0 0 0

2 2

1 2 0 3 0

0 0 0

1 , ( ( )) , ( ) , ( ( )) , ( )

, ( ( )) , ( ) , ( ( )) , ( )

, ,

, ,

BL

BL

t t s

s

t t s

t

t

t s

s

x C C E f s x s s E g s x s s ds

C E f x E g x d ds

C C Y s x ds C Y x d ds

C C Y s x ds C Y x

  



   

          

 



 

 

   
 

  
 

  

  



 

  

   d ds

         (3.11) 
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where  

  
 

2

1 2

1

2

2 22
1 0 ( )

4 2
2

4 2 2 2
3

(0) ,

3 ,

3 .

S L

S

S K K

g

g

C M

C M T M

C M T TM M M

 


 

 

 

 (3.12) 

By choice of 0u  in (3.2), we know that the solution u to (3.2) satisfies  

 
2 2

0 1 0 0

0 0

( ) ( , ( )) ( , ( ))
t

T

s

t
u t u C Y s u s Y u d ds C x x    

      
 
  . (3.13) 

In view of (3.13), we can continue the string of inequalities in (3.11) to further conclude that 

 

   
2

1 2 3

0 0 0

1

0 0

1 0

1

1 , ( ) , ( )

( , ( )) ( , ( ))

( )

( ) (by choice of ) .

t t s

t

t

s

x C C Y s u s ds C Y u d ds

C C Y s u s Y u d ds

C u u t

u t C

  

  

 

 

  

 
   

 
  



  

   

One can now proceed inductively to conclude that, in fact, 
2

( )n t
x u t , for all 1n   and for 

all 10 t T  , thereby establishing (3.3).   

 

Next, in order to verify (3.4), let 10 t T   and note that  

   
2 2 2

0 0
1 1 1( ) ( ) (0) sup ( ) ( ) (0) sup ( ) ( ) (0)

r s s t
t

x S E x s S s E x s S s  
    

       . (3.14) 

The continuity of the semigroup, with (A4), guarantees the existence of a positive constant  

such that  

 
2 2

0 0
1sup ( ) ( ) (0) sup ( ) ( ) (0)

r s r s
E x s S s E s S s   

     
    . (3.15) 

Also, for all 0 ,s t   we have 
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2

0 0

1( ) ( ) (0) ( , ( )) ( , ( ))
s

E x s S s C Y u Y u d d


        
   

 
  . (3.16) 

Consequently, using (3.15) and (3.16) in (3.14) yields  

 
2

0

0 0

1 ( , ( )) ( , ( ))
t s

t
x x C Y s u s Y u d ds     
    

 
  . (3.17) 

The continuity of u and Y  guarantees the existence of 2 10 T T   such that the right-side of 

(3.17) is bounded above by R, for all 20 t T  .  This, in turn, implies that 
2

01 t
x x R  , for 

all 20 t T  .  Moreover, using (3.3), together with the calculations leading to (3.11), enables us 

to deduce easily from induction that 
2

0n t
x x R  , for all 20 t T  , for all n, proving (3.4). 

 

Next, we assert that 

2

0 0

( ,8 ) ( ,8 )n m n

t s

t
x x C Z s R Z R d ds 

 
   

 
  ,     (3.18) 

for all 20 and , 1.t T n m     This is easily seen since (3.1) implies that for any 20 t T  , 

2 2

0
sup ( ) ( )n m n n m n

s t
t

x x E x s x s 
 

   . 

Using the formulae in (3.1), along with (A3) and (A5)(ii), gives rise to 

    2 22

1 1 1 1

0 0

, ,n m n n m n n m n

t s

t s
x x C Z s x x Z x x d ds


       

 
     

 
  . (3.19) 

Then, the triangle inequality, together with (3.4), implies 

 
2 2 2

1 1 1 0 1 04 8n m n n m ns s s
x x x x x x R     

        
, 

so that we can use this estimate to conclude that (3.18) holds due to the monotonicity of Z. 
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The next step is to define the following two sequences on  20,T : 

  1

0 0

( ,8 ) ( ,8 )
t s

t C Z s R Z R d ds  
 

  
 
  , (3.20) 

        1

0 0

, ,n n n

t s

t C Z s s Z d ds     

 
  

 
  ,  for all 1n  , (3.21)  

   2

, , for all , 1m n m n n t
t x x n m    . (3.22) 

The continuity of Z ensures the existence of 3 20 T T   such that 

 1 38 , for all 0t R t T    .   (3.23) 

We assert that for all , 1m n  , the following string of inequalities holds: 

        , 1 1 3, for all 0 .m n n nt t t t t T          (3.24) 

To verify this claim, let 1m   and proceed by induction on n.  Observe that (3.18) implies 

    2

,1 1 1 1m m t
t x x t    , 

and then, using the computations leading to (3.18), along with the monotonicity of Z, yields 

          2

,2 2 2 1 1 2

0 0

, , ,m m

t s

t
t x x C Z s s Z d ds t      

 
     

 
   (3.25) 

for all 20 t T  .  But then, using (3.21) and (3.23) together yields (again due to the 

monotonicity of Z) that 

    2 1

0 0

( ,8 ) ( ,8 )
t s

t C Z s R Z R d ds t   
 

   
 
  , (3.26) 

for all 30 t T  .  Hence, from (3.25) and (3.26), we see that 

      ,2 2 1 3, for all 0 .m t t t t T       
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The same approach can be used to easily establish the inductive portion of the proof, thereby 

enabling us to conclude that (3.24) holds, as desired.   

 

As a consequence of (3.24), we deduce that   n  is a decreasing sequence in n, and that for 

each 1n ,  n t is an increasing continuous function of t.  Therefore, the following function is 

well-defined: 

     3
1

inf , 0 .n
n

t t t T 


    (3.27) 

Observe that  is nonnegative and continuous,  0 0  , and 

        
0 0

, ( ) , ( )
t s

t C Z s s Z d ds       
 

  
 
  , for all 30 t T  . 

Hence, from (A5)(ii)(d), we deduce that 0   on  30,T .  Furthermore, (3.24) implies that 

      
3 3

, 3
0, 0,

sup sup 0 as m n n n
t T t T

t t T n  
       

      (3.28) 

since   3n T is decreasing towards    3 3
1

inf 0n
n

T T 


  .  Consequently, we infer from 

(3.22), (3.24) and (3.28) that ( )nx  is a Cauchy sequence in 
3TC .  The completeness of TC  then 

guarantees the existence of a process ( )x  such that
3

2

0,

sup 0n
t T

t
x x

  

  as n   .  Further, 

we can deduce from (A5)(ii)(c) that 

     2
, , 0 0n s

Z s x x Z s   , 

 for all 30 s T  , and hence, we conclude from an inspection of the variation of parameters 

formula that x is, in fact, a mild solution to (1.1) on  30,T . The fact that such a solution is 

unique also follows easily using the properties of Z.  Moreover, the a priori bounds established 
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thus far used in conjunction with the continuity enable us to extend the solution from  30,T  to 

 3 3, 2T T  and so on, to eventually the entire interval  0,T  in finitely many steps.  As such, we 

conclude that for a fixed 2C


  , (1.1) has a unique mild solution x on  0,T .  This concludes 

the first of two main parts of the proof. 

 

Finally, we must prove that   is, in fact, the probability distribution of x . To this end, let 

 L x       ( ) : ,L x t t r T   denote the probability distribution of x  and define the map 

2 2: C C
 

   by ( ) ( )L x  . It is known that   2( ) ( )L x t H 
 , for all  ,t r T  , since 

Tx C  , 2
0( ; ) ,L C   and   2

( ( )) , ( ( )) ( ) , for allL x t L x t E x t r t T       (by definition), so 

that   2
sup ( ( )), ( ( )) ( )

Tr t T
L x t L x t x t  

  
    from earlier estimates.  In order to conclude that 

 is well-defined, it remains to verify the 2L  continuity of the map  ( )t L x t . To do so, 

first let 0r c    and 0h  be small enough so that 0r c h    . For all such c and h, 

2 2
( ) ( ) ( ) ( )E x c h x c E c h c        , which approaches 0 as 0h  due to the sample path 

continuity of  .  Next, let 0 c T  , and for sufficiently small 0h  , observe that the continuity 

of x , Y and Z ensures that 

       
2

0
lim ( ) ( ) 0, .for all
h

E x c h x c r c T 
       (3.29) 

Next, for all  ,c r T   and 2C


  , it is the case that 
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 

2

( ) ( ( )) ( ( )) ( ) ( ( ; )) ( ( ; ))

( ( )) ( ( ))

( ) ( ) .

H

C

x L x c h L x c dx x c h x c d

E x c h x c

E x c h x c


   

 

 

     

 





      

    

  

 

 (3.30)  

Using (3.29) in (3.30), we have for all r c T   , 

            
1

( ( )) , ( ( )) sup ( ) ( ( )) ( ( )) ( ) 0 as 0
C H

L x c h L x c x L x c h L x c dx h


   


 


      , 

thereby proving that  ( )t L x t  is a continuous map, so that   2L x C 
 .  Thus, is well-

defined. 

 

It remains to prove that  has a unique fixed point in 2C


. Let 2, C


   and ,x x  be the 

corresponding mild solutions of (1.1) on  0,T .  Standard computations yield 

   2 2 2 2 2
2 3 2 3

0 0 0

, , ( ) ( , ), 0 .
t t s

Tt s
x x C Z s x x ds C Z x x d ds C T C T D t T      

               (3.31) 

We deduce from Lemma 2.4 that there exists 10 T T   such that  

  2 2 2
2 1 3 1 1( ) ( , ) ( ) , 0 ,Tt

x x C T C T D r t t T            (3.32) 

where ( )r t is the maximal solution to (2.8).  From Remark 3.1(iii), we are guaranteed the 

existence of 2 10 T T    such that these two conditions are satisfied: 

  There exists 1
20 C   such that 2( ) ( , )Tr t C D   , for all 20 t T   , for all 2, C


   , (3.33) 

      2 1
22 2 3 2( )C T C T   . (3.34) 

Then, using (3.33) in (3.32) on 20,T    , we obtain 

  2 2 2 2
2 2 3 2 2( ) ( , ) ( , ) , 0 ,T Tt

x x C T C T C D M D t T               (3.35) 
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where 1M  .  Hence,  

         
2 2 2

22 2 2( ) ( ) ( ), ( ) ,C TT T
D x x M D


                , for all 20 t T   , (3.36) 

so that  is a strict contraction on   2 2, ; ( ) ,C r T H    P . Thus, (1.1) has the desired unique 

mild solution on 20, T     with probability distribution   2 2, ; ( ) ,C r T H     P , and so, has 

a unique fixed point.  This process can be repeated on abutting intervals of length 2T   finitely 

many times to extend this fixed point to the entire interval  0,T  to conclude that  is the 

probability distribution of x on  0,T .  This completes the proof.  � 

 

Remark 3.3   We recover the existence and uniqueness of a mild solution of (1.1) under the 

classical Lipschitz condition, as well as for linear delay, as special cases of Theorem 3.2.  This, 

together with incorporating the dependence of the nonlinearities on the probability distribution, 

enables us to generalize and/or view the existence results in [1, 15, 17, 20, 25, 35, 40] as 

corollaries of Theorem 3.2. 

 

The next result establishes a convergence scheme in which we define an appropriate sequence of 

strong solutions which converges to the mild solution of (1.1).   

Proposition 3.4  Let X denote the unique mild solution of (1.1)  guaranteed to exist by Theorem 

3.2.  Then, there exists a sequence of strong solutions   1n n
X




 such that 0

T
nX X   as 

n  . 

Proof.  For each 1n  , define   2: 0, ( )
n tif T C H H     P and     2: 0, ( )

ni tg T C H


  P  

( ; ) ( 1,2)BL K H i by 
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   ( , , ) ( ; ) ( , , )
ni if t x n R n A f t x  , (3.37) 

   ( , , ) ( ; ) ( , , )
ni ig t x n R n A g t x  , (3.38) 

where ( ; )R n A is the resolvent of A corresponding to ( )n A .  Consider the following sequence 

of auxiliary initial-value problems: 

       

       

1 1

1 2 2 2
0 0

( ) ( ) , ( ( )) , ( ) , ( ( )) , ( ) ( )

( , ) , ( ( )) , ( ) ( , ) , ( ( )) , ( ) ( ) , 0

n n n n n nn n

t t

n n n nn n

d X t AX t dt f t X t t dt g t X t t dW t

K t s f s X s s ds K t s g s X s s dW s dt t T

   

   

   

 
    

 
 

  

( ) probability distribution of ( ),

.( ) , 0( ; ) ( )

n n

n

t X t

X r tn R n A tt







   
  (3.39) 

 

Assuming that (A1) - (A5) hold, one can invoke Theorem 3.2 to deduce that (3.39) has a unique 

mild solution n TX C  with probability distribution 2n C


  . Further, since ( ) ( ),nX t D A  for all 

 ,t r T   (see [11]), it follows that nX is, in fact, a strong solution of (3.39) (in the sense of 

Definition 2.2). Moreover, since a strong solution is also a mild solution, nX can be represented 

using the variation of parameters formula (cf. Definition 2.1 (iii)).  

 

We claim that 0
T

nX X   as n . To verify this, let  ,t r T  and estimate 

2
( ) ( )nE X s X s , for all  ,s r t  .  Observe that if  ,0s r  , then 

   2

2 2 2
( ) ( ) ( ; ) ( ) ( ) ( ; )n L

E X s X s E nR n A s s nR n A I       . (3.40) 

If  0,s t , then using the variation of parameters formula yields 
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     

     

     

   

1

2

22 2
1

0

2 2 2 2
1 2

0 0

2 2
2 1

0

2 2 2
1 2

( ) ( ) 32 ( ; ) ( ) (0) , ( ( )) , ( )

, ( ( )) , ( ) , ( ( )) , ( )

, ( ( )) , ( ) , ( ( )) , ( )

, ( ( )) , ( )

n S nn

K S nn

S nn

K S

s

n

s

n

s

n

E X s X s E nR n A I S s TM E f X

f X d M M T E f X

f X d d M E g X

g X d M M E g



     

          

           

     

    


 

 





 



 

 

 

0 0

2

2

8
2

5

, ( ( )) , ( )

, ( ( )) , ( )

32 ( ; ) ( ) (0) ( )

nn

i
i

s

nX

g X d d

E nR n A I S s I s



    

      






 
   

 

 



(3.41) 

Applying the triangle and Hölder inequalities yields the following estimates: 

 

   

   

22
5 1

0

22
1 1

0

( ) 4 ( ; ) , ( ( )) , ( )

4 , ( ( )) , ( ) , ( ( )) , ( )

S n n

S n

s

s

n

I s TM E nR n A I f X d

TM E f X f X d

     

          

 

 




 (3.42) 

 

   

   

1

1

22 2 2
6 2

0 0

22 2 2
2 2

0 0

( ) 4 ( ; ) , ( ( )) , ( )

4 , ( ( )) , ( ) , ( ( )) , ( )

S K n n

S K n

s

s

n

I s T M M E nR n A I f X d d

T M M E f X f X d d





      

           

 

 

 

 
(3.43) 

 

   

   

1

1

22
7 1

0

22
1 1

0

( ) 4 ( ; ) , ( ( )) , ( )

4 , ( ( )) , ( ) , ( ( )) , ( )

S g n n BL

S g n BL

s

s

n

I s M M E nR n A I g X d

M M E g X g X d

     

          

 

 




 (3.44) 

   

   

2 2

2 2

22 2
8 2

0 0

22 2
2 2

0 0

( ) 4 ( ; ) , ( ( )) , ( )

4 , ( ( )) , ( ) , ( ( )) , ( )

S K g n n BL

S K g n BL

s

s

n

I s TM M M E nR n A I g X d d

TM M M E g X g X d d





      

           

 

 

 

 
 (3.45) 

Combining (3.42) – (3.45) in (3.41) now yields 
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   

 

2 22
3 1

0

2

2

0 0

( ) ( ) 32 ( ) ( ) , ,

, ,

n t n n s

n

t

s

E X s X s n C t D C Z s X X ds

C Z X X d d




  

  

 



     


 





 
 (3.46) 

where  

 2

2 22( ) (0) ( ; )S L
n M E nR n A I     first terms on the right-sides of (3.42) – (3.45),   

  
1

2
1 4 S gC M T M   , 

  
1 1 2

2 2 2
2 4 S K K gC M T M T M M   , 

 2
3 1 1( )C t C t C t    . 

We deduce from Lemma 2.4 and Remark 3.1(iii) that  

   2 2
332 ( ) , ( ),n t nt

X X n C D r t      for all 0 t T  . (3.47) 

where 0 T T   is chosen such that these two conditions hold: 

( )r t is the maximal solution of (2.8) (suitably identified) on 0,T    such that  (3.48) 

( ) ( ) ( ),r t n R t where 
0

(0) 0, max ( ) R
t T

R R t M
 

    and ( ) 0n   as n , 

and 

             3 1C T  .  (3.49) 

Since   2 22 ( ) , ( ) ( ) ( )n n n t
t t E X t X t X X       , we know that   22 ,t n n t

D X X    , so 

that using this fact, along with (3.48) and (3.49), enables us to infer from (3.47) that 

    2

31 32 ( ) ( )n Rt
C T X X n M n     for all 0 t T  . (3.50) 

 
 
  



24 
 

The fact that ( ; ) 0nR n A I  as n , together with (3.48), implies that 
2

0n t
X X  as 

n .  Reapplying the above strategy on successive intervals of length T  yields the desired 

result in finitely many steps.  � 

 

Remark 3.5   It is clear that n  in 2C


since   22 ( ) , ( ) ( ) ,
r

n n t t C
t t E x x     for all 0 .t T   

 

It is not difficult to formulate the analogs of Theorem 3.2 and Proposition 3.4 for the time-

dependent case (2.2). In place of (A1), we assume instead that 

(A6)  ( ): 0A t t T  is a family of linear operators on H with domains ( ( ))D A t  such that 

( ( ))D A t D  (independent of t) which generates an evolution operator 

 ( , ): 0U t s s t T   of bounded linear operators on H. 

The result is formulated as follows: 

 

Theorem 3.6   If (A2) - (A6) are satisfied, then (2.2) has a unique mild solution TX C with 

probability distribution 2X C  .  Further, there exists a sequence of strong solutions   1n n
X




 

which converges to X in TC . 

The strategy used to prove this result is similar in spirit to the one used to establish Theorem 3.2 

and Proposition 3.4.  The formal modifications involve replacing the semigroup ( )S t  by the 

evolution operator ( , )xU t s  (and using the concomitant properties thereof), and using counterparts 

of Lemmas 2.3 and 2.4. The details are omitted.   
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For the last main result of this section, we reformulate Theorem 3.2 in the case where the initial 

data is replaced by a so-called nonlocal initial condition of the form 

  1( ) ( ( )), . . . , ( ( )) ( ) ( ), 0mx t g x t x t t t r t       , (3.51) 

where 10 . . . mt t T    are fixed,   satisfies (A4), and g satisfies 

(A7)  :
m

T Tg C C  is a continuous map such that 

    
( ( ))

1 1( ( )), . . . , ( ( )) ( ) ( ( )), . . . , ( ( )) ( ) ,
tm

m m g C
g x t x t s g x t x t s M x x


         

   ,for all Tx x C , for some positive constant gM . 

The motivation and relevance of considering initial-value problems with such conditions was 

first discussed for abstract deterministic Cauchy problems by Byszewski [8, 9], and subsequently 

for related equations in recent years (see [2, 25] and the references therein). For related work on 

deterministic delay equations with nonlocal initial conditions, we refer the reader to [4].    

 

A continuous H-valued process x is a mild solution of (1.1) equipped with the initial condition 

(3.51) if x satisfies Definition 2.1 with  1( ) ( ( )), . . . , ( ( )) ( ) ( )mx t g x t x t t t     in place of 

( ) (0)S t  in (iii). We have the following nonlocal version of Theorem 3.2. 

Theorem 3.7   If (A1) - (A5), (A7), and  2 2
2 30 (1 ) 1 (1 ) 1S g R RM M M C T C T M            

hold, then (1.1) (coupled with (3.51) in place of the classical initial condition) has a unique mild 

solution Tx C with corresponding probability distribution. 

Proof   Let 2v C  be fixed and consider the initial-value problem 

 

   

   

1 1

1 2 2 2
0 0

( ) ( ) , ( ( )) , ( ) , ( ( )) , ( ) ( )

( , ) , ( ( )) , ( ) ( , ) , ( ( )) , ( ) ( ) , 0 ,

v v v v v v

t t

v v v v

d x t A x t dt f t x t t dt g t x t t dW t

K t s f s x s s ds K t s g s x s s dW s dt t T

   

   

   

 
    

 
 
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 1( ( )), . . . , ( ( )) ( ) ,( ) , 0( )v mg v t v t tx r ttt        (3.52) 

( ) probability distribution of ( ).v vt x t   

We can apply Theorem 3.2 to conclude that (3.52) has a unique mild solution vx on  0,T  with 

probability distribution 2v C  .  Define the operator : T TC C   by ( ) vv x  .  The well-

definedness and continuity of  are easily verified.  To see that  is a contraction, let 1 2, Tv v C  

and observe that for r t T   , standard computations (involving (A7)) yield 

    

   

   
1 2 1 2

1 2 1 2

2 22 2 2
2 3 1 2

2 2

2 3

0 0 0

32 ,

, , ,

t S g Tt

s

v v v v

t t s

v v v v

X X C T C T D M M v v

C Z s X X ds C Z X X d ds


 

 

    


    


  
 (3.53) 

Applying Lemma 2.4 guarantees the existence of 0 T T   such that  

    1 2 1 2

2 22 2 2
2 3 1 232 , ( ),t S g Ttv v v vX X C T C T D M M v v r t          (3.54) 

where ( )r t is the maximal solution to (2.8).  From Remark 3.1(iii), we infer that there exists 

0 T T    such that  

    1 2

22 2 2
2 3 1 2( ) 32 , ( ),t S g Tv vr t C T C T D M M v v R t        (3.55) 

where ( )R t satisfies the conditions in (3.48).  Since  
1 2 1 2

2
2 ,t tv v v vD X X    and, by 

assumption,  2
2 31 (1 ) 0RC T C T M    , we can continue (3.54) to further obtain 

   
1 2

2 22 2
2 3 1 21 (1 ) 32 (1 ) ,R S g R Ttv vC T C T M X X M M M v v          

so that we conclude that 

 
 1 2

2
2 2 2

1 2 1 22
2 3

32 (1 )
.

1 (1 )

S g R

T Tt
R

v v

M M M
X X v v v v

C T C T M


    

    
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This proves that   is a contraction on TC  and hence, by the Banach Contraction Mapping 

Prinicple, has a unique fixed point which is the mild solution we seek.  □ 

 

If A is time-dependent, one can argue similarly that (2.2) (together with (3.51)) has a unique mild 

solution.  

 

4   EXAMPLES 

Example 4.1   Let D be a bounded domain in N with smooth boundaryD .  Consider the 

following initial boundary value problem: 

                 
0

( , ) ( , ) , ( , ) , ( ) ( , ) , ( , ) ( ) , 0, ,  a.e. on
t

t zx t z x t z f t x t r z t a t s g s x s r z d s T        D  

 

 

 
1

( , ) 0,  0, ,

( , ) , ( , ) ( , ) , 0, ,

a.e. on

a.e. on
k

k k

p
k

k k
kk

t

t

x t z T

c
x t z c x t t z x t z d t z r t


   

  

 
        

  
 

D

D
 (4.1) 

where 1 20 . . . pt t t T     are fixed, ( 1, . . . , )kc k p are given positive constants, and 

( 1, . . . , )k k p  are positive constants satisfying 

 1 1 10 , ( 2, . . . , )k k kt t t k p      . 

Also,  2
0 ( )C L  D and  is an N-dimensional standard Brownian motion. We assume that 

(A8)     2

2: 0, ( ( ))f T L


  P D and   2: 0, ( , ( ))Ng T BL L   D satisfy (A5), 

(A9)   2(0, )a L T . 

Let 2 ( )H L D and NK R , and define the operator : ( )A D A H H  by 

 2 1
0( , ) ( , ) , ( ) ( ) ( ).zA x t x t x D A H H      D D  (4.2) 
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Define the maps   21 : 0, ( )Tf T C H H


  P ,  1 : 0, ( , )Tg T C BL K H  , respectively, by 

 1( , , ( ) )( ) ( , ( )( ) , ( )) ,f t t z f t r z t      (4.3) 

 1( , )( ) ( , ( )( ) ),g t z f t r z    (4.4) 

for all 0  andt T z  D .  Let ( )t t r   , for all 0 t T  , and define :( ) p
T Tg C C  by 

  1 2
1

( ( ) , ( ) , . . . , ( )) ( ) ( ) , ( , ) , 0.
k

k k

p
k

p k k
kk

t

t

c
g x t x t x t t c x t t x t d r t


  

 
          

  
   

Using these identifications, (4.1) can be written in the abstract form (1.1) (coupled with a 

nonlocal initial condition and 2 2 0f g  ). It is known that A generates a strongly continuous (in 

fact, compact) semigroup  ( )S t on 2 ( )L D  (see [30]). Clearly, g satisfies (A7) with 
1

2
p

g k
k

M c


  .  

Hence, if  2 2
2 30 (1 ) 1 (1 ) 1S g R RM M M C T C T M            (where 2 3andC C are suitably 

modified), then we infer immediately from Theorem 3.7 that (4.1) has a unique mild solution. 

 

Remark 4.2.  If we take 0kc  , for all k, then (4.1) becomes a classical initial-boundary value 

problem and the corresponding existence result in such case follows from Theorem 3.2. 

 

Example 4.3   Consider the following initial-boundary value problem of Sobolev type: 

    

   

 
0

( , ) ( , ) ( , ) , ( , ) , ( )

( , ) , ( , ) ( ) , 0 ,  0,
t

z z z zx t z x t z x t z f t x t r z t
t

a t s g s x s r z dW s z t






    



    
 

     ( , 0 ) ( , ) 0 , 0,x t x t t     (4.5) 

      
1 0

( , ) ( ) ( , ) ( ) , ( , ) ( , ) , 0 , 0
Tp

i i
i

x t z c z x t z c s h s x s z ds t z z r t 


          
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where 1 20 . . . pt t t T     are given,W is a standard 2 (0, )L  valued Wiener process, and 

  2
2: 0, ( (0, ))f T L


     and   2: 0, ( , (0, ))g T BL L    satisfy (A8). We impose the 

following additional restrictions: 

(A10)   : 0,h T     satisfies the usual Carathéodory conditions and is globally Lipschitz in 

the second variable, 

(A11) 2 (0, )c L T , 

(A12) 2 (0, ) ,  1, . . . , .foric L i p   

Let 2 (0, ) ,H L K  , and define the operators : ( )A D A H H  and : ( )B D B H H  , 

respectively, by 

 
( , ) ( , ) ,

( , ) ( , ) ( , ) ,
zz

zz

A x t x t

Bx t x t x t

   

    
 

with domains 

  22( ) ( ) : , (0, ) , (0) ( ) 0 (0, ) are absolutely continuous ,z zzD A D B x L x x x L x x       . 

Assume that  2
0 (0, )C L  , define 1f and 1g as in (4.3) and (4.4), and :( ) ( ( ))p

T Tg C C D B  by 

     
1 0

1 2 ( ) ( , ) ( ) , ( , ) ,( ( ) , ( ) , . . . , ( )) ( ) ( ) 0
Tp

i
i

p ic x t c s h s x s dsg x t x t x t s r s


         . (4.6) 

Then, (4.5) can be written in the abstract form  

 
     1 3

0

1 2( ) ( ) , 0.

( ) ( ) , ( ( )) , ( ) ( , ) , ( ( )) ( ) , 0 ,

( ( ) , ( ) , . . . , ( )) ( )

t

px t t r t

Bx t A x t f t x t t a t s f s x s dW s t T

g x t x t x t t 

  

    

       (4.7) 

where   is defined as in Example 4.1.  Upon making the substitution ( ) ( )v t Bx t in (4.7), we 

arrive at the equivalent problem 
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   1 1 1

1 3
0

1 2( ) ( ) , 0.

( ) ( ) , ( ( )) , ( ) ( , ) , ( ( )) ( ) , 0 ,

( ( ) , ( ) , . . . , ( )) ( )

t

pv t B B t r t

v t AB v t f t B v t t a t s f s B v s dW s t T

g x t x t x t t 

    

    

      (4.8) 

It is known that B is a bijective operator possessing a continuous inverse and that 1AB  is a 

bounded linear operator on 2 (0, )L  which generates a strongly continuous (again, compact) 

semigroup ( )T t on 2 (0, )L  satisfying (A6) with 1SM    (see [26]). Since 1f and 1g satisfy (A8) 

and g satisfies (A7) with 

 22 (0, )(0, )
1

2
p

g h L TL
i

iM c M c





 
  

 
 , 

we can invoke Theorem 3.7 (assuming the data is sufficiently small) to conclude that (4.8) has a 

unique mild solution v . Consequently, 1x B v  is the corresponding mild solution of (4.7) and 

hence, of (4.5). 

 

This example provides a generalization of the work in [7, 26] to the stochastic setting. Equations 

of this type arise naturally in applications (see [3, 5, 10, 19, 32, 33, 36, 37]). 
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