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{jie, jiang}Qcse.fau.edu

Abstract

In this paper several enhanced sufficient conditions are given for minimal routing in 2-dimensional
(2-D) meshes with faulty nodes contained in a set of disjoint faulty blocks. It is based on an early
work of Wu’s minimal routing in 2-D meshes with faulty blocks. Unlike many traditional models
that assume all the nodes know global fault distribution, our approach is based on the notion of
limited global fault information. First, a fault model called faulty block is proposed in which all
faulty nodes in the system are contained in a set of disjoint faulty blocks. Fault information is coded
in a 4-tuple called extended safety level associated with each node of a 2-D mesh to determine the
feasibility of minimal routing. Specifically, we study the existence of minimal route at a given source
node based on the associated extended safety level, limited distribution of faulty block information,
and minimal routing. An analytical model for the number of rows and columns that receive faulty
block information is also given. Extensions to Wang’s minimal-connected-components (MCCs) are
also considered. MMCs are rectilinear-monotone polygonal fault blocks of the polygonal shape and
are refinement of faulty blocks. Our simulation results show substantial improvement in terms of
higher percentage of minimal routing in 2-D meshes under both fault models.

Keywords: Fault models, fault tolerance, high assurance, minimal routing, 2-D meshes.
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1 Introduction

In a multicomputer system, a collection of processors (or nodes) work together to solve large application
problems. These nodes communicate data and coordinate their efforts by sending and receiving packets
through the underlying communication network. Thus, the performance of such a multicomputer system
depends on the end-to-end cost of communication mechanisms. Routing time of packets is one of the
key factors that are critical to the performance of multicomputers. Basically, routing is the process of
transmitting data from one node called the source node to another node called the destination node
in a given system. A minimal routing always routes the packet to the destination through a shortest
path. The mesh-connected topology is one of the most thoroughly investigated network topologies for
multicomputer systems. The 2-dimensional (2-D) mesh is the most popular mesh-connected topology.

Some multicomputers were built based on the 2-D mesh [4, 10, 11].

As the number of nodes in a 2-D mesh increases, the chance of failure also increases. The complex
nature of networks also makes them vulnerable to disturbances. Therefore, the ability to tolerate failure
is becoming increasingly important for obtaining high assurance systems, especially in the communi-
cation subsystem. Several studies have been conducted which achieve fault tolerance by adding (or
deleting) extra components of the system [5, 14]. However, adding and deleting nodes and/or links
require modifications of network topologies which may be expensive and difficult. We focus here on
achieving fault tolerance using the inherent redundancy present in 2-D meshes, without adding spare

nodes and/or links.

An important and challenging issue is to extend communication subsystems which include various
routing algorithms to cope with faulty components. To this end, fault model and information model are
the two keys to successfully extend the existing approaches. We use a convex shape of fault region called
faulty block as our fault model and propose a novel information model in which each node in a 2-D
mesh collects and distributes coded fault information (rather than detailed fault information) to support
scalability. Unlike many existing information models that require each node to have knowledge of the
entire network, coded fault information associated with each node represents limited global information
by exploring locality of disturbances in the network. It also reduces the memory requirement [7] to
store fault information at each node. When a disturbance occurs, only those affected nodes update

their information to keep it consistent.

The safety-level-based routing [16], a special form of limited-global-information-based routing, is
a compromise between local-information- and global-information-based approaches. In this type of
routing, a routing function is defined based on current node, destination node, and limited global
fault information gathered at the current node. This approach differs from many existing ones where

information is brought by the header of the routing packet [3], and the routing function is defined



based on header information and local state of the current node [6]. In this approach, neighborhood
fault information is captured by an integer (safety level) associated with each node. For example, in a
binary hypercube, if a node’s safety level is L (an integer), there is at least one Hamming distance (or
minimal) path from this node to any node within Hamming-distance-L in the hypercube [18]. Using
the safety level associated with each node, a routing algorithm can obtain an optimal or suboptimal
solution. In addition, it requires a relatively simple process to collect and maintain fault information
in the neighborhood. Therefore, limited-global-information-based routing can be more cost effective
than routing based on global or local information. The safety-level-based routing has been successfully
applied to binary hypercubes but less efficient when it is directly applied to mesh topologies such as 2-D
meshes. In [17], Wu introduced the concept of extended safety level with its use in achieving minimal
routing in 2-D meshes with faulty nodes contained in a set of faulty blocks. Basically, extended safety
level associated with each node contains distances to closest faulty blocks in four directions (East,
South, West, and North). When the extended safety level of the source meets a safety requirement
(also called sufficient safe condition) with respect to its distance to the destination, minimal routing is
guaranteed. Extended safety level only guarantees the existence of a minimal route. To facilitate the
minimal routing, faulty block information also needs to be distributed to nodes along four boundary

lines of each faulty block.

However, the sufficient safe condition in [17] is overly conservative. In addition, only minimal routing
is considered. In this paper, we provide several extended sufficient safe conditions without adding routing
complexity. The notion of sub-minimal routing is also introduced together with a sufficient condition.
Specifically, we address the existence of a minimal path at a given source node based on the associated
extended safety level, limited distribution of faulty block information, and minimal and sub-minimal
routing in these extensions. An analytical model for the number of rows and columns that receive faulty
block information is also given. Extensions to Wang’s minimal-connected-components (MCCs) [15] are
also considered. MMCs are rectilinear-monotone polygonal fault blocks of the polygonal shape and are
refinement of faulty blocks. The size of faulty blocks is reduced by considering the relative locations of
source and destination nodes during the block formation process. The purpose of MCC is to facilitate
minimal routing in the presence of faults; that is, a node is included in an MCC block only if using that

node in a routing will definitely make the route non-minimal.

Many studies have been done on routing in 2-D meshes based on the faulty block model [1, 2, 8,
12, 13, 19]. Most approaches try to reduce either the number of nonfaulty nodes in a faulty block by
considering different types of fault regions or the number of virtual channels to support deadlock-free
routing. Relatively few work has been done in minimal routing in 2-D meshes with faulty blocks. In
other fields, faulty-block-based routing in 2-D meshes is called collision-free routing in the presence
of obstacles. These fields include routing urban vehicles, motion planning in robotics, wire routing in

VLSI and logistics in operations research. The focuses in these fields are different. Most problems are



optimization problems associated with a certain optimization function such as the minimum number of

bends as in VLSI routing. See [9] for a survey of researches in these fields.

This paper is organized as follows: Section 2 presents some preliminaries, including extended safety
levels in 2-D meshes under both the faulty block model and the MCC model, and Wu’s safety-level-
based minimal routing in 2-D meshes. Section 3 proposes extended sufficient safe conditions under both
fault models. Section 4 discusses several implementation issues and an analytical model is also given.
Simulation results are presented and we compare them with optimal results in Section 5. Section 6

concludes the paper.

2 Preliminaries

2-D meshes. An n X m 2-D mesh with n X m nodes has an interior node degree of 4. Each node u
has an address (zy,yy), where 0 < z,, < n and 0 < y,, < m. Two nodes u : (zy,yy) and v : (x,,y,) are
connected if their addresses differ by one in one and only one dimension. Basically, nodes along each
dimension are connected as a linear array. The distance between two nodes s and d, D(s,d), is equal
to|zg—xs | + | yg — ys |. Assume that node u is the current node, d is the destination node, and v is
a neighbor of node u. v is called a preferred neighbor with respect to destination d if D(v,d) < D(u,d);
otherwise, it is called a spare neighbor. Respectively, the corresponding connecting directions are called
preferred direction and spare direction. A minimal routing always selects a preferred neighbor at each

hop towards the destination.

Block fault model. Most existing literatures on fault-tolerant routing use disjoint rectangular blocks
to model node faults and to avoid routing difficulties in meshes. A node-labeling scheme that identifies

nodes is defined as follows:

Definition 1: In a 2-D mesh, a non-faulty node is initially labeled enabled; however, its status is changed
to disabled if there are two or more disabled or faulty neighbors in different dimensions. Connected

disabled and faulty nodes form a faulty block.

A faulty block consists of faulty and disabled (but non-faulty) nodes. In a 2-D mesh, an enabled
node is an adjacent node of a faulty block if it has one faulty or disabled neighbor in that faulty block.
A corner of a faulty block is defined as an enabled node with two adjacent nodes of that faulty block in
different dimensions. In Figure 1 (a), eight faults (3,3), (3,4), (4,4), (5,4), (6,4), (2,5), (5,5), and (3,6)

form a rectangle [2:6, 3:6]. In general, [Tmin : Tmaz, Ymin ° Ymaz) represents a faulty block.

Minimal-connected-components (MCCs). The minimal-connected-component (MCC) [15] was

proposed to reduce the size of a faulty block by “removing” four “corner sections” of the block based on
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Figure 1: (a) A faulty block consisting of faulty and disabled nodes. (b) The corresponding type-
one MCC. (c) The corresponding type-two MCC. (d) Useless and can’t-reach nodes for quadrant I

destinations.

the relative location of the source and destination. If the destination is at the first or third quadrant of
the source, the NW and SE corner sections are removed and the corresponding MCC is called type-one
MCC. If the destination is at the second or fourth quadrant of the source, the SW and NE corner
sections are removed and the corresponding MCC is called type-two MCC.

We assume that the destination is at the first quadrant of the source to illustrate MCCs. Two types
of disabled nodes are used: useless and can’t-reach nodes. A node labeled useless is such a node that
once it is entered in a routing, the next move must take either west or south direction, making a minimal
routing (in the first quadrant) impossible. A node labeled can’t-reach is such a node that to enter it in
a routing, a west or south move must be taken, making a minimal routing impossible. The node status
(faulty, fault-free, useless, and can’t-reach) can be determined through a labeling procedure. Connected

faulty, useless, and can’t-reach nodes form an MCC. The following definition [15] defines a type-one
MCC:

Definition 2: Initially, all faulty nodes are labeled as faulty and all non-faulty nodes as fault-free. If
node u 1s fault-free, but its north neighbor and east neighbor are faulty or useless, u is labeled useless.
If node u is fault-free, but its south neighbor and west neighbor are faulty or can’t-reach, u is labeled

can’t-reach. Connected faulty, useless, and can’t-reach nodes form an MCC.

The labeling procedure for quadrant II (the destination is in northwest) can be derived from that for
quadrant I by exchanging the roles played by east and west neighbors. Again, the labeling procedure
for quadrant IV (III) is from one for quadrant IT (I) by exchanging the role of useless and can’t-reach.
MCCs generated from quadrants IT and IV (I and III) are the same. Figure 1 (d) shows the definition

of useless and can’t-reach nodes (for quadrant I destinations). Figure 1 (a) shows a sample faulty



block based on Definition 1. Figure 1 (b) shows the corresponding type-one MCCs (for quadrants I &
ITT destinations). The corresponding type-two MCC (for quadrants IT & IV destinations) is shown in
Figure 1 (c).

Since a node may have different status (i.e., whether it is an MCC or non-MCC node) for quadrant
I/III or quadrant IT/IV routing, each node carries two status: (statusi, statuss) where status; is for
quadrant I/III routing and statussy is for quadrant II/IV routing. Referring to Figures 1 (b) and (c)
again, the status of node (4,3) is (fault-free, fault-free). The one for (2,6) is (fault-free, disabled),
for (4,5) is (disabled, disabled), and for (2,3) is (disabled, fault-free). It is assumed that source and
destination nodes both have (fault-free, fault-free) status.

Extended safety level. The extended safety level [17] of a node in a given 2-D mesh is a 4-tuple: (E,
S, W, N), where E stands for the distance from this node to the closet faulty block to its East. S, W,
and N are defined in a similar way. To ensure a minimal path from source node, Wu [17] provided the

following safe node definition:

Definition 3: Assume that source node s:(0,0) has an extended safety level (E, S, W, N) and destination
node is d:(xgq,yq), with ©g,yq > 0. The source node is safe with respect to d if vty < E and yq < N;

otherwise, it is unsafe.

Theorem 1 [17]: If the source node is safe with respect to the destination node, a minimal path is

guaranteed from source to destination.

The proof of Theorem 1 can be done constructively starting from the destination. A west-bound
message (see Figure 2 (a)) from the destination is sent from the destination until reaching the y axis.
Then, the message follows the y axis to reach the origin (source). If the message hits a faulty block
before reaching the y axis, it routes around the block by going south to reach the SE corner of the
block, and then it continues west-bound. Similarly, another minimal path can be constructed by a
south-bound message initiated from the destination as shown in Figure 2 (a). In fact, Wu [17] has
shown that the region enclosed by the west-bound and south-bound paths includes intermediate nodes

and only intermediate nodes of all minimal paths between the source and destination.

A node at source (0,0) is safe if section [0, z4] of the x axis and section [0, y4] of the y axis are both
clear of any faulty block. Clearly, the above safety level model and the corresponding result are still
applicable to 2-D meshes with MCCs. Figure 2 (b) illustrates the sufficient safe condition for source
(0,0) and destination (x4, yq).

Faulty-block-information used in minimal routing. The extended safety level associated with the
source is used only to ensure the existence of a minimal route from the source to a given destination.

However, extended safety level information only is not sufficient to support minimal routing. In the
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Figure 2: (a) Constructing minimal paths from the destination. (b) Sufficient safe condition.

example of Figure 3 (a), source (0,0) is safe with respect to a destination in region R4. Without any
other information, a minimal route may not be guaranteed even if a preferred neighbor is selected at
each hop towards the destination. For example, consider any minimal routing that forwards the packet
to a preferred neighbor. Once the packet enters region Rg, no more minimal route is possible (all such

routes are blocked by the faulty block). Clearly, more information is need to guarantee a minimal route.

In [17], Wu presented a faulty-block-information model to facilitate a minimal route. Faulty block
information of each block (i.e., Tmin, Ymin, Tmaz> Ymaz 10 DIOCK [Zmin : Tmaz, Ymin : Ymaz)) is distributed
to all nodes in the adjacent lines of the block. These lines (Lq, Lo, L3, and L4 in Figure 3 (a)) are
called boundaries of that faulty block. Figure 3 (b) shows an example of boundaries of multiple faulty
blocks for quadrant I destinations (i.e., x4, yq > 1). The boundaries start from two corners (NE-corner
(Tmaz + 1, Ymaz + 1) and SW-corner (Zmin — 1, Yymin — 1)) of each faulty block and go forward along with
each direction of X and Y dimensions. Without any other faulty block, the propagation of boundary
information is forwarded node by node in each direction until it reaches an edge of the mesh. If a
boundary L; intersects with another faulty block, a turn is made towards L; of the encountered faulty
block. Another turn is made at the corner of the second faulty block to join L; (see Figure 3 (b) where
L3 of block i joins L3 of block j).

In [17], Wu proposed a routing algorithm based on the faulty block information for any routing from
safe source s:(0,0) to destination d:(z4, yq), with x4, yg > 0. The safety status of the source is determined

from the extended safety level associated with the source. The routing starts from a safe source and
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Figure 3: (a) Boundaries of a faulty block. (b) Boundaries of multiple faulty blocks for quadrant I

destinations.

uses any adaptive minimal routing until the boundary of any faulty block is met. If the selection of any
preferred neighbor does not affect the minimal routing, the path is non-critical; otherwise, it is critical.
In case of a critical path, one of preferred directions cannot be selected in a minimal routing due to the
effect of faulty blocks. Such a direction is called preferred but detour direction. The selection should be

done at current node u:(z,, y,) based on the relative location of the destination in Wu’s protocol [17]:

WU’S PROTOCOL
case current node u
On the left section of L; of any faulty block:
If the destination is in the area of Rg divided by the boundaries of that faulty
block, the routing packet should stay on L; until reaching the intersection of
L1 and Ly; otherwise, the next hop can be any preferred direction.
On the lower section of L3 of any faulty block:
If the destination is in the area of R4 divided by the boundaries of that faulty
block, the routing packet should stay on L3 until reaching the intersection of
L3 and Ls; otherwise, the next hop can be any preferred direction.
Otherwise:
Select any preferred direction.

end case
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Figure 4: (a) A sequence of blocks covers s and d on y and (b) a sequence of blocks covers s and d on z.

For example, as shown in Figure 3 (b), when the routing packet from (0,0) meets the lower section
of L3 of faulty block j, it also meets L3 of faulty block ¢. If the destination is not in R4 of block ¢ or
R4 of block j, the routing process is still non-critical and any of two preferred directions (positive X
and positive Y') can be selected; otherwise, the routing is critical and the packet cannot be forwarded
to positive X. In this case, positive X is the preferred but detour direction and positive Y is the only
preferred direction that can be selected to construct a minimal path. Again, faulty-block-information

used in minimal routing is the same under the MCC model.

Necessary and sufficient conditions. Wang [15] gave a necessary and sufficient condition for the
existence of a minimal path in 2-D meshes with either faulty blocks or MCCs. We use faulty blocks
to illustrate, assuming that the destination is in the first quadrant. Block 7 is represented as [z(Z)min :
2(5)maz Y(8)min * Y(D)maz]. Block i covers block j on y if Y(i)min > Y()maz a0d T(E)min < 2(})mas <
Z(1)maz- A sequence of blocks 1,2,....k cover source s : (0,0) and destination d : (z4,yq) on y if (a)
block i+ 1 covers block i on y, fori = 1,2,....k—1, (b) 2(1)min < 0 < 2(1)maz and y(1)min > 0, and (c)
Z(k)min < 4 < 2(k)maz and y(k)maz < yg. The notions of block i covers block j on y and a sequence
of blocks 1,2, ...,k cover source s : (0,0) and destination d : (x4,yq) on x are defined in a similar way
by exchanging the role of z and y. Wang’s necessary and sufficient condition can be stated as follows:
A minimal route from s to d exists if and only if no sequence of blocks exists that covers s and d on
x and no sequence of blocks exists that covers s and d on y. The notion of coverage is illustrated
in Figure 4. However, global information of fault distribution is needed to apply this necessary and

sufficient condition.



3 Extended Sufficient Conditions

In this section, we consider three extensions of the sufficient safe condition in Definition 2. Basically,
we try to strengthen the sufficient safe condition without resorting to global fault information as used
in Wang’s necessary and sufficient condition. Note that in a global-fault-information model each node
stores 0(n?) of global information in an n x n 2-D mesh. Assume that source node s:(0,0) has an
extended safety level (E,S, W, N) and destination node is d:(z4,yq), with z4,ys > 0.

Extension 1. In the first extension, the sufficient safe condition is enhanced by taking into consideration
of neighbors’ (preferred or spare) safety status. First, the notion of sub-minimal routing is defined: sub-
minimal routing is a minimal routing with one detour. A detour occurs when a spare neighbor is
selected once during a routing process. Clearly, the length of a sub-minimal path is the length of the
corresponding minimal path plus two. In this extension, the additional information stored at each node

is constant (information collected from four neighbors).

Theorem la: Minimal routing exists if the source node is safe or one of the preferred neighbors is safe
(with respect to the destination); otherwise, sub-minimal routing ezists if one of the spare neighbors is

safe with respect to the destination.

When the source is unsafe, but one of its neighbors (preferred or spare) is safe, then the routing
process consists of two phases: send the routing packet from the source to the selected neighbor, and

then, apply Wu’s protocol with the selected neighbor being the new source.

Extension 2. In this extension, the sufficient condition is extended to cover cases where either section
[0, z4] of the = axis is clear of faulty blocks or section [0, y4] of the y axis is clear of faulty blocks, but
not both. Suppose the extended safety level of the source is (E, S, W, N). Then it collects the extended
safety level of each node that is within E hops in the East direction. Similarly, S, W, and N hops in the
South, West, and North directions, respectively. Specifically, suppose the source is (0,0), the extended
safety level of node (+k,0) (k-hop neighbor in the East direction) is (x,*,*, N;), where * is a don’t
care (similarly, the extended safety level of node (0,+k) (k-hop neighbor in the North direction) is

(B, *,%,%)), we have the following extension.

Theorem 1b: (x,x,%, N.) is the extended safety level of node (+k,0) and (Eyg, *, *, x) is the extended
safety level of node (0,+k). Minimal routing exists if

o the source node is safe; that is, g < E and yg < N; or
e 24 < E and node (+k,0) with k < E is safe with respect to (x4,yq); that is, yg < Ni; or

e yg < N and node (0,+k) with k < N 1is safe with respect to (xg,yq); that is, zq < E .

10
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Figure 5: A two-phase routing process in 2-D meshes: (a) from (0,0) to (+k,0) and from (+k,0) to
(zd,ya)- (b) from (0,0) to (z;,y;) and from (24,y;) to (x4, Ya)-

Again a two-phase routing process is used in extension 2: Wu’s protocol is applied from (0,0) to
(+k,0) (or (0,+k)) and, then, from (+%,0) (or (0,+k)) to (z4,yq). Figure 5 (a) shows an example of
extension 2. In this extension, additional information stored at each node is x4+ yg = O(n) inann xn
2-D mesh.

Extension 3. Extension 2 works when the relevant section of one axis is clear of any faulty block.

Extension 3 tries to cover cases when both sections intersect with faulty blocks.

Theorem 1lc: (E;, S;, W;, N;) is the extended safety level of node (z;,y;), where 0 < z; < x4 and
0 <y; < ygq. Minimal routing exists if
o the source node is safe; that is, tqg < E and yg < N; or

e (0,0) is safe with respect to (z;,y;) (i-e., x; < E and y; < N) and (z;,y;) is safe with respect to

(d,ya) (i.e., va—zi < E; and yqg — yi < N;).

A two-phase routing process is again used in extension 3: Wu’s protocol is applied from (0,0)

to (z;,y;) and, then, from (z;,y;) to (z4,y4) as shown in Figure 5 (b). In this extension, additional

11



Figure 6: Distribution of faulty-block-information (lines) and extended-safety-level-information (shad-

owed regions).

information stored at each node is 24 - yg = O(n?). In the next section, we discuss some variations of

this extension by selectively choosing some pivot nodes in region [0 : z4, 0 : y4].

Again, all results apply to the MCC model. In order to distinguish two different models, extensions

1, 2, and 3 are labeled as extensions la, 2a, and 3a respectively under the MCC model.

4 Implementation Issues

Once faulty blocks are constructed, faulty-block-information and extended-safety-level-information need
to be distributed. Faulty-block-information (two opposite corners of a faulty block) needs to be dis-
tributed to boundary lines of faulty blocks (see lines in Figure 6) and extended-safety-level-information
(distance to the faulty block along each direction) needs to be distributed to only nodes between two
parallel boundary lines of each faulty block (see shadowed regions in Figure 6). The same result also
applies to the MCC model. Comparing with other fault information models such as a routing table
associated with each node, the distribution and update process of such information is simple and con-
verges quickly. Since the distribution is directional, this process is also free from oscillations occurred

in a routing table.

The distribution of faulty-block-information has been discussed at Section 2. Here we focus on the

distribution of extended-safety-level-information.

12



FORMATION-EXTENDED-SAFETY-LEVEL-INFORMATION
{At node u with (E, N, W, S) upon receiving an extended safety level (E',N' W', S')}
case sender
East neighbor: u’s extended safety level is (E + 1, N, W, S)
u forwards its extended safety level to its West neighbor (if any)
North neighbor: u’s extended safety level is (E, N "+1,W, S)
u forwards its extended safety level to its South neighbor (if any)
West neighbor: u’s extended safety level is (E, N, W' +1, S)
u forwards its extended safety level to its East neighbor (if any)
South neighbor: u’s extended safety level is (E, N, W, S + 1)
u forwards its extended safety level to its North neighbor (if any)

end case

Note that the default extended safety level is (00,00, 00,00). In the absence of faulty blocks, no

information distribution is needed. Next, we consider information distribution in three extensions.

In extension 1, each node exchanges its extended safety level with its four neighbors. In extension
2, arow (and column) is called an affected row (and affected column) if the row (and column) intersects
at least one faulty block. Note that nodes and only nodes on affected rows (and columns) need to
collect extended safety level information. Boundary lines are not affected rows or columns. The number
of boundary lines is always four times the number of faulty blocks. Nodes along each affected row
(and affected column) exchange their extended safety levels. Note that each affected row (and affected
column) is partitioned into several disjoint regions by faulty blocks and two edges of the 2-D mesh.
Therefore, the exchange is within each region. A simple implementation of such an exchange starts
from two ends of each region and pushes the partially accumulated information to the other end. Two
partially accumulated information packets initiated from two ends form a complete packet (of extended
safety level information within a region). In extensions 3, one or more nodes, called pivot nodes,
are selected to distribute its extended safety level information to all nodes in the 2-D mesh through

broadcasting.

Several variations of extension 2 and extension 3 exist. In extension 2, to reduce the amount of
information exchange, each region is further partitioned into several segments. One extended safety
level from each segment is selected (typically the one with the highest safety level) to be passed around.
The size of segments is adjustable. Another variation is to select up to four extended safety levels
within each region (each one corresponds to the highest safety level along a particular direction within
the region). In extension 3, the selection of pivot nodes can be done in a recursive way. For example,

the center node of the 2-D mesh is first selected and, then, the mesh is partitioned into four submeshes
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by the pivot node. Each pivot node is selected from each of the four submeshes. This process continues
until each submesh is sufficiently small. Clearly, the number of pivot nodes is Ei-c:l 41 where k is the
level of partition. Another variation of extension 3 is to select pivot nodes in such a way that not only

they are evenly distributed but also no two pivot nodes are on the same row or column.

We have the following analytical model on the expected number of affected rows (and columns) in

an n X n 2-D mesh with k faults.

Theorem 2: In an n X n 2-D mesh with k randomly generated faults. When k is relatively small with

respect to n, the expected number x of affected rows (and affected columns) meets the following:

T
n
in{lk — S ———[}.
minlk = > o)

In addition, this expected number remains the same under the faulty block and MCC models.

Proof: Let us call a case in which a fault falls into a row (column) that is clean (i.e., with no fault in
the row (column) before the fault) a hit and the row (column) becomes dirty. The hits can be used to
partition k faults into stages. The ith stage consists of the faults after the (i — 1)th hit until the sth hit.
The first stage consists of the first hit, since we are guaranteed to have a hit when all rows (columns)
are clean. For each fault during the ith stage, there are i — 1 rows that contain faults and n —¢ + 1
clean rows. Thus, for each fault in the ith stage, probability of a hit is (n — i + 1)/n. Note that fault
selection is not random with respect to a row (column). Because a dirty row (column) has fewer choices
(among unselected columns (row) within a row (column)) than a clean row (column), the probability
of a hit (on a clean row or column) is slightly higher than (n —i +1)/n. Since k is relatively small with
respect to n, the difference is negligible. Let n; denote the number of faults in the ith stage. Thus, the

number of stages z is
T
min{[k — Y ni).
i=1
Each random variable n; has a geometric distribution, and then,

n

Bl =01

By linearity of expectations

B[y ni]=) E[n]= Z #ﬂ

i=1 i=1

Since E[k] = k, we have the expected number of stages E[z] meet the following condition,

T
n
in{|k — — |}
mink = 32— )
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Figure 7: The expected percentage of affected rows (and columns) under the analytical model and the

simulated model for n = 200.

Based on the definitions of disabled node under the faulty block and MCC models. A node is labeled
disabled if there are two or more disabled or faulty neighbors in different dimensions. That is, a disabled

node will not generate a new hit on row or column. [

Figure 4 (a) shows the expected number of affected rows (and columns) under the analytical model
and the simulated model for n = 200. The results for both analytical and experimental are very close,
even when the number of faults reaches 200. Again, this is not surprising, when the number of dirty
rows (that cause hits) is 60% of 200 (i.e., 120), each dirty row on the average has less than 2 hits.
That is, when a new fault is selected, a dirty row has over 198 free column slots while a clean row has
200 free column slots. The difference is less than 1%. From Figure 4 (a), we can see that about 20%
percent of rows (columns) are affected when the number of faults reaches 50, 40% percent when the
number of faults reaches 100, and 60% percent when the number of faults reaches 200. This confirms

the effectiveness of limited global distribution of fault information.

5 Simulation Results

A routing process using either the sufficient safe condition or any of its three extensions can decide
if there is a minimal/sub-minimal path at the source. A simulation has been conducted to test the
effectiveness of such a safe condition and its three extensions. We use a 200 x 200 mesh with randomly
generated faults. The source is at the center of the mesh and is the origin of the coordinator. The
coordinator divides the mesh into four 100 x 100 quadrants. Without the loss of generality, we assume

that the destination is always located at the first quadrant.
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Figure 8: Average number of disabled nodes in a faulty block.

After the occurrence of faults (which are randomly generated), faulty blocks and MCCs are con-
structed, faulty-block-information and extended-safety-level-information are distributed. And then, we
randomly pick a destination in the first quadrant (in the 100 x 100 submesh) and show the percentage
of the existence of a minimal/sub-minimal path ensured at the source. To simplify the simulation,
we assume that the source and destination are outside of any faulty block and the number of faults
in the whole network is no more than 200. Figure 9 shows the average number of disabled nodes in
a faulty block under the regular faulty block model and the MCC model. Although the MCC model
generates fewer disabled nodes than the faulty block does in terms of percentage, the actual number of
disabled nodes generated are both very small. The reason is that in our simulation, faults are randomly
generated and are scattered in the 200 x 200 2-D space, the probability of generating large faulty blocks
is small. Therefore, in the following simulations the difference between the MCC model and the faulty

block model is insignificant in terms of percentage of the existence of a minimal/sub-minimal path.

Figures 9 (a) and (b) show the percentages of the existence of a minimal path ensured by extension 1
and extension la and compare them with the ones ensured by the sufficient safe condition under the
regular faulty block model and under the MCC model (safe source in the figure). If the number of faults
in the whole network is no more 30, most of routing processes (90% by the sufficient safe condition and
99% by extension 1) can ensure a minimal path at their sources. Existence of a minimal path is based
on Wang’s necessary and sufficient condition. The percentage of the existence of a minimal path stays
very high (close to 1) under both models even when the number of faults reaches 200. Figure 9 also
shows the probabilities of a safe neighbor for the given source; that is, the corresponding routing process
ensures at least a sub-minimal path (extension 1 (sub-min) and extension la (sub-min) in Figure 9) at

the source. These percentages also indicate the feasibility of applying the minimal/sub-minimal routing.

Figures 10 (a) and (b) show the percentages of the existence of a minimal path ensured by variations
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Figure 11: Percentage of a minimal path ensured at the source by the sufficient safe condition and

variations of extension 3 (a) and extension 3a (b).

of extension 2 and extension 2a with different sizes of disjoint segments and compare them with the
one ensured by the sufficient safe condition under both fault models. When the source has extended-
safety-level-information of all the nodes along X and Y dimensions in the same region, most of routing
processes (> 94%) can ensure a minimal path at their sources. As the size of segments increases, the
number of segments in a region is reduced (i.e., fewer samples are collected). Since only one extended
safety level from each segment is selected, less safety level information can be used and the percentage
goes down. Note that the percentage (of the existence of a minimal path) is relatively insensitive to the
size of segments (especially when the size of segments is relatively small between 1 and 10). However,
when only one segment is used in each region, segment information is not useful for most cases, either the
selected node fails the sufficient safe condition or the selected node is outside the region [0 : 24,0 : yq4].
The percentage ensured in such a case is close to the one ensured by the sufficient safe condition only.

(Both extension 2 and extension 2a contain at least the extended-safety-level-information of the source.)

Figures 11 (a) and (b) show the percentages of the existence of a minimal path ensured by variations
of extension 3 and extension 3a with different levels of partition and compare them with the one ensured
by the sufficient safe condition under both fault models. When the center node of the submesh (in
the first quadrant) is selected in the first level, the source of a routing has the extended-safety-level-
information from that pivot node. Thus, the routing process can find more minimal paths than the
one based on the sufficient safe condition only. As the number of levels increases, the more pivot nodes
are selected, and more safety-level-information is collected at source. Therefore, the percentage of the
existence of a minimal path (if it exists) increases. Note that such a percentage changes significantly

whenever an extra level is added.

Figures 12 (a) and (b) show the percentages of the existence of a minimal path ensured by strategies
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Figure 12: Percentage of a minimal path ensured at the source by combinations of different extensions:
(a) Strategies 1, 2, 3 and 4. (b) Strategies la, 2a, 3a and 4a.

generated from different combinations of extensions. In routing strategy 1, extension 1 is first applied.
If it cannot ensure a minimal path, extension 2 is then applied. Again, strategy la means strategy 1
under the MCC model and the same convention applies to other strategies. Here, the size of a segment
in each region is set to 5. Figures 12 (a) and (b) show that most of cases (> 95%) have a minimal path
by using routing strategy 1. In routing strategy 2, extension 3 is applied after extension 1 (if needed).
Such a routing strategy can ensure more minimal paths (> 97%) than routing strategy 1. Here each
pivot node in extension 3 is selected randomly in a submesh and the partition level is set to 3. Clearly,
the number of pivot nodes is equal to 1 (at level 1) + 4 (at level 2) + 16 (at level 3) = 21. In routing
strategy 3, extension 2 (with a segment size of 5) is applied first; and then, extension 3 (with a partition
level of 3). In routing strategy 4, all the extensions are applied in the order of extensions 1, 2, and 3.
Among all these four routing strategies, routing strategy 4 has the maximum percentage of the existence
of a minimal path ensured at the source. The result from strategy 3 stays relatively close to the one
from strategy 4. In Figure 12, the difference in percentages between any two strategies indicate the
effectiveness of different combinations of extensions. Again, all strategies can be applied to the MCC
model. In order to distinguish two models, strategies 1, 2, 3, and 4 are labeled as strategies la, 2a, 3a,

and 4a, respectively under the MCC model.

From the above simulation, we conclude that in a 2-D mesh in which the number of faults is usually
low, the sufficient safe condition and its extensions can ensure a minimal/sub-minimal path for most
cases, especially extension 2 and extension 3, although the sufficient safe condition and extension 1
can be implemented much easily. The percentage of a minimal/sub-minimal path does not go down as
much as the number of faults increases. Extension 2 and extension 1 each can ensure more minimal

paths than the sufficient safe condition. Extension 3 can ensure more minimal paths than extension 2
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(and extension 1). As the number of segments inside one region increases, extension 2 can ensure more
minimal paths. However, the difference is not as significant as one when we increase the level of partition
in extension 3. When the sufficient safe condition and its extensions are all applied, the corresponding
routing strategy can ensure a minimal path for over 97.5% cases as long as the number of faults stays

within 200 in a 200 x 200 2-D mesh. Again, we can conclude the similar results under the MCC model.

6 Conclusions

In this paper, we have given three extensions to a sufficient condition for the existence of a minimal path
in a 2-D mesh with faulty blocks. Extensions have also been applied to 2-D meshes with the MCC model
which is based on the faulty block model by activating some disabled (but healthy) nodes. Simulation
results have confirmed the effectiveness of these extensions and their combinations. Results also show
that the percentages of minimal routing under extensions are very close to the optimal case with global
information. Our future work will focus on trade-offs between cost and effectiveness. Possible extensions

to 3-D meshes and other high-dimensional mesh networks will be another focus.
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