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ON APPROXIMATELY CONTROLLABLE SYSTEMS 
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Gazimagusa, Mersin 10, Turkey 

bDepartment of Mathematics, West Chester University 

West Chester, Pennsylvania 19383 USA 

Email: nazim.as@mozart.emu.edu.tr  mmckibben@wcupa.edu  

 

The aim of this article is to provide a thorough analysis of the approximate controllability of 
abstract systems, beginning with the inception of the concept in the 1960s. The study begins with 
a discussion of abstract infinite-dimensional linear systems where the notion of approximate 
controllability originated. The extension of this foundational theory to nonlinear systems is 
reviewed, followed by a modern treatment of fractional approximate controllability which has 
significant applications in the mathematical modeling of phenomena across disciplines.  

 

1.  Introduction 

The notion of controllability represents a major concept of modern control theory.  In (Kalman, 
1960) and (Kalman et al., 1963), Kalman introduced the concept of (exact) controllability for 
finite-dimensional dynamical systems.  Intuitively, a dynamical system is exactly controllable if 
it can be steered from an arbitrary initial state to an arbitrary final state in finite time using a set 
of admissible controls. This work set the stage for the theory of controllability developed in the 
more than half a century that followed, and which was first expanded upon for abstract linear 
systems by H.O. Fattorini in the works (Fattorini, 1966) and (Fattorini, 1967).   

In the decade that followed, researchers investigated this notion of controllability for infinite-
dimensional abstract systems and encountered an interesting finding: for abstract linear systems 
taking values in an infinite-dimensional, separable Banach space, under conditions comparable 
to those established in the finite-dimensional theory, the system could not be exactly controllable 
on any finite interval. This observation was made by R. Triggiani in (Triggiani, 1972, 1975). 
This prompted the formulation of the weaker notion of approximate controllability.  Intuitively, a 
dynamical system is approximately controllable if an arbitrary initial state can be steered toward 
an arbitrarily small neighborhood of any given final state.  
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For infinite-dimensional systems in which one can formulate an exact controllability result, 
typically the hypotheses one must impose to establish the result are too restrictive or are 
extremely difficult to verify in practical situations.  As such, the notion has limited applicability.  
However, approximate controllability results are much more prevalent and from the viewpoint of 
applications, approximate controllability is quite adequate. As such, studying the weaker notion 
of approximate controllability for nonlinear systems is not only important, it is necessary.   

The remainder of the article is structured as follows. We begin in Section 2 with a brief review of 
foundational controllability results for abstract linear control systems. We primarily focus on the 
discussion provided in the seminal papers written by H.O. Fattorini (Fattorini, 1966, 1967, 1975) 
and R. Triggiani in the mid 1970s (Triggiani, 1972, 1975, 1976), and more recently by Bashirov 
and Mahmduov (Bashirov and Mahmudov, 1999). The discussion in Section 3 then focuses on 
some initial pinnacle contributions to the theory of approximate controllability of abstract 
systems formulated by equipping linear systems with a nonlinear forcing term. Among the 
papers reviewed are (Dauer and Mahmudov, 2002), (Mahmudov, 2003), (Naito, 1987), and 
(Zhou, 1983, 1984). The conditions that ensure the approximate controllability of abstract 
nonlinear systems are typically established using tools of semigroup theory, operator theory and 
fixed-point theory under the assumption that the linear part of the associated nonlinear system is, 
itself, approximately controllable.  

The discussion and theory developed in the papers reviewed in Sections 2 and 3 paved the way 
for the study of approximate controllability of a diverse collection of abstract systems, including 
stochastic evolution equations of various types (Mahmudov and McKibben, 2006), equations of 
Volterra type (Ke, et al., 2012), equations of Sobolev type (Kerboua, et al., 2013; Mahmudov, 
2013); neutral equations (Kumar and Sukavanam, 2012; Mahmudov, 2013); delay systems 
(Kumar and Sukavanam, 2012, 2013; Sakthivel and Ren, 2013; Sukvanam and Kumar, 2011; 
Yan, 2012), nonlinear differential inclusions (Sakthivel, et al., 2013; Vijayakumar, et al., 2013), 
and equations equipped with nonlocal initial conditions (Mahmudov and Zorlu, 2013), just to 
name a few. 

The ever-expanding abstract theory developed over the past half-century is important from the 
viewpoint of applications, and has been applied to a continually increasing collection of concrete 
PDEs and nonlinear ODEs arising in the mathematical modeling of phenomena occurring in 
various disciplines, including physics, engineering, population ecology, etc. thereby broadening 
the scientific community’s understanding these phenomena.  The article finally concludes with a 
survey of very recent efforts in developing a theory of approximate controllability of abstract 
fractional differential equations in Section 4.   
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2.  Approximate Controllability of Linear Systems 

We begin our discussion with the seminal works of R. Triggiani (Triggiani, 1972, 1975, 1976).  
The theory developed in these papers is concerned with abstract control systems of the form 

 0( ) ( ) ( ),y t Ay t Bu t t t    ,  (0.1) 

where ( )y t  belongs to a complex, separable infinite-dimensional Banach space X (called the 

state space) with norm 
X

 ; u belongs to a complex, separable Banach space U (called the 

control space); :B U X  is a bounded linear operator; and the operator : ( )A dom A X X 

satisfies the following assumption: 

Assumption H2.1: : ( )A dom A X X  is a closed, linear densely-defined operator that is the 

infinitesimal generator of a strongly continuous semigroup of bounded operators  0( ) :S t t t on 

X. 

If the control space U is finite-dimensional with dimension m, say with basis  : 1,...,ie i m ,  

(0.1) can be written as  

 0
1

( ) ( ) ,
m

i i
i

y t Ay t b u t t


      (0.2) 

where ( ) ( )i ib t B t e  (i = 1, … , m) and iu are the components of u.   

The following concept of approximate controllability of (0.1) was introduced: 

Definition 2.1   

i.)  System (0.1) is approximately controllable on  0 ,t T   if for every 0   and arbitrarily 

chosen initial starting position 0y  and final ending position 1y  in X, there is an admissible 

control ( )u t  on  0 ,t T  for which  

 0 0 1( , , , )
X

y T t x u y   ,  (0.3) 

where 0 0( , , , )y T t y u  is the solution of (0.1) corresponding to the initial point  0 0y t y  and 

control u, evaluated at time t = T.   (Equivalently, for each initial starting position 0y , the set of 

all points to which 0y  can be steered by admissible controls on  0 ,t T is dense in X.) 

ii.) If 0   in (i), we say that (0.1) is exactly controllable on  0 ,t T .   
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An admissible control u on  0 ,t T is a U-valued Bochner integrable function with bounded norm 

( )
U

u t  on  0 ,t T .  For each such admissible control u and initial condition 0 0( )y t y , it is 

known that under assumption H2.1, (0.1) has a unique mild solution on  0 ,t T expressed by the 

variation of parameters formula 

 
0

0 0 0 0( , , , ) ( ) ( ) ( )
t

t
y t t y u S t t y S t Bu d      .  (0.4) 

 For brevity, we shall henceforth write ( )y t in place of 0 0( , , , )y t t y u .  

Remark  Definition 2.1 can be suitably modified for the more specific control system (0.2). 

For the finite-dimensional case (when nX    and mU   ), parts (i) and (ii) of Definition 2.1 

are equivalent. A well-known result in the finite-dimensional case (when nX    and mU    
and so, A and B are matrices) is that (0.1) is exactly controllable (and hence, approximately 

controllable) if and only if 1, , ... , nrank B AB A B n    . The following characterization is the 

extension of this result to the infinite-dimensional case  

Theorem 2.1 System (0.1) is approximately controllable on 0[ , ]t T  if and only if  

   cl span : 0nA BU n X  .  (0.5) 

Regarding system (0.2), condition (0.5) can be written as  

   cl span : 0, 1,...,n
iA b n i m X   .  (0.6) 

This result provides an algebraic test for the approximate controllability of (0.1) in contrast to the 
results established by Fattorini (Fattorini, 1966, 1967), which employ a much more technical 
apparatus involving the use of ordered representation theory of a Hilbert space for self-adjoint 
operators. 

Triggiani discusses several examples of Volterra integral equations and specific PDEs. As part of 
this discussion it is shown that while some of these systems are indeed approximately 
controllable under appropriate conditions, they are not exactly controllable on any interval.  As 
such, when X is infinite-dimensional there are systems of the form (0.1) that are approximately 

controllable on  0 ,t T , but not exactly controllable on  0 ,t T . More precisely, the following 

theorem is proven in (Triggiani, 1975): 

Theorem 2.2  Let X be an infinite-dimensional Banach space. The system (0.2) defined on X can 

never be exactly controllable on any (fixed) finite interval 0[ , ]t T .  The same is true for system 
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(0.1) defined on X under the assumptions that :B U X is a compact operator and that X has a 
Schauder basis.  

Consequently, the introduction of the more general concept of approximate controllability is not 
only nontrival, but it is essential. Even though the concept is weaker, it proves more widely 
applicable than exact controllability (especially considering the highly restrictive assumptions 
that must be imposed in order to ensure such a system in exactly controllable) and it has been 
shown that in practical applications, the notion of approximate controllability is more than 
adequate.  

Remark  The more general non-autonomous case in which the operators A and B depend on t is 
also studied in (Triggiani 1975), but for simplicity and interest of uniformity of discussion 
throughout the manuscript, we focus only on the autonomous case.  

The above investigation is continued in the second seminal paper (Triggiani, 1976).  A more 
specialized framework for (0.1) and (0.2) (in the sense of enhanced assumptions being imposed 
on the operators A and B and restricting the underlying state space X) in an effort to establish 
readily-verifiable criteria for the approximate controllability of these systems involving the 
eigenvalues of A is explored.  Specifically, in addition to assumption H2.1, the following 
additional restrictions are imposed: 

Assumption H2.2:  The state space X is a Hilbert space. 

Assumption H2.3:  The operator : ( )A dom A X X   is normal and there exists 0  for which 

the resolvent operator  0 ,R A is a compact operator on X. 

In such case, the following result is proved: 

Theorem 2.3  Suppose that assumptions H2.1 – H2.3 are satisfied. Then, (0.1) is approximately 

controllable on 0[ , ]t T  if and only if  

   , 1, 2,...j jP rngB X j    (0.7) 

where jX is the jr -dimensional eigenspace associated with the eigenvalue j and jP  is the 

orthogonal projection of X onto jX .   

Remark  The condition in Theorem 2.3 holds, for instance, when the range of the operator B is 
all of X.  

A result concerning the approximate controllability of (0.2) is established under the following 
additional analyticity assumption, which holds, for instance, if A satisfies assumption H2.1 and is 
self-adjoint. 
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Assumption H2.4:  The eigenvalues of A are contained in a sector  2: arg( )a        , 

where a is a real number and 20   . 

Let  : 1,..., , 1, 2,...jk je k r j  be a complete orthonormal set of eigenvectors of A. (Note that 

every x in X can be expressed uniquely as 
1 1

,
jr

jk jk
j k

x x e e


 
   .)  For each j = 1, 2, … and every 

m-tuple  ib of vectors in X, the jr m  matrix jB  is defined as follows:  

 

1 1 1

1 2 2

1

, ,

, ,

, ,
j j

j m j

j m j

j

j r m j r

b e b e

b e b e
B

b e b e

 
 
 
 
 
 
  





  



  (0.8) 

The result concerning the approximate controllability of (0.2) can now be stated as follows: 

Theorem 2.4  Suppose that assumptions H2.1 – H2.4 are satisfied. Then, (0.2) is approximately 

controllable on 0[ , ]t T  if and only if for all vectors , 1,...,ib i m in X,  

 , for all 1, 2, ...j jrank B r j    (0.9) 

Much work on the approximate controllability of abstract linear systems was published in the 
years following the appearance of these two papers. Of them, we next focus on the work in 
(Bashirov and Mahmudov, 1999).  New necessary and sufficient conditions based on the 
convergence of a certain sequence of operators involving the resolvent of the negative of the so-
called controllability operator are established in this paper for the approximate controllability of 
(0.1).   

Remark  The results we mention below are actually special cases of the ones proved in that 
paper. Indeed, a nonlinear version of (0.1) is considered, as well as a related stochastic variant.  
We present a simpler case, however, to highlight the nature of the conditions for approximate 
controllability being formulated. The nature of these conditions is novel in and of itself, and are 
useful for the study of controllability issues for many different types of problems. 

Assume that the operator A satisfies assumption H2.1 and recall the variation of parameters 

formula (0.4).  For every 0 t T  , the operator    0: , 0,t T    defined by  

 0( ) ( ) ( ) ,
T

t
T t S T s BB S T s ds t T T          (0.10) 

is called a controllability operator.   
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The following theorem provides necessary and sufficient conditions for the approximate 
controllability of (0.1) in terms of (0.10) and the associated resolvent operators. 

Theorem 2.5 The following statements are equivalent: 

i.)   The control system (0.1) is approximately controllable on 0[ , ]t T . 

ii.)  If 0( ) 0, for all [ , ]B S t x t t T    , then x = 0. 

iii.)  , ( )R T   converges to the zero operator as 0   in the strong operator topology. 

iv.)  , ( )R T   converges to the zero operator as 0   in the weak operator topology. 

Here,     1
, ( ) ( )R T I T     .   

This work was continued and expanded upon in (Mahmudov, 2003).  

 

3.  Approximate Controllability of Nonlinear Systems 

We now investigate the controllability of abstract systems obtained by equipping the linear 
control systems reviewed in Section 2 with a nonlinear forcing term.  Controllability results for 
the nonlinear infinite dimensional case primarily concern semilinear control systems consisting 
of a linear part and a nonlinear forcing term. Various sufficient conditions for approximate 
controllability have been established in the past three decades.  

We begin with the work of Zhou (Zhou, 1983, 1984).  This work is an outgrowth of the study by 
Henry (Henry, 1978).  Unlike Henry’s results, these results apply to a nonlinear abstract control 
system in a Hilbert space, as well as finite-dimensional differential equations. The semilinear 
abstract evolution equation  

 
0

( ) ( ) ( ( )) ( )( ), 0

(0)

y t Ay t F y t Bv t t T

y y

     
 

  (1.1) 

is studied. Here, :[0, ]y T H  is the state trajectory and H is a Hilbert space; the control ( )v   

belongs to 2 (0, ; )L T V (the space of square-integrable V-valued functions on (0,T)), where V is a 

possibly different Hilbert space (for instance, 2 (0, ; )V L T X , where X is a real Hilbert space); 

: ( )A dom A H H   is a linear operator on H; :F H H  is a nonlinear operator; :B V H  

is a bounded linear operator; and 0y H . 



8 
 

Generally, the approximate controllability for semilinear systems is linked to the operators B and 
F and their relationship to one another. This fact becomes apparent when reviewing the nature of 
the following assumptions imposed.   

Assumption H3.1: : ( )A dom A H H  is a linear operator that generates a differentiable 

semigroup  ( ) : 0S t t T   on H. 

Assumption H3.2:  2: 0, ;B V L T H  is a bounded linear operator. 

Assumption H3.3: :F H H is a nonlinear operator for which there exists a positive constant 

FM such that  

1 2 1 2 1 2( ) ( ) ,   for all ,FH H
F y F y M y y y y H    .  

Zhou considers an intercept system related to (1.1) on the interval  0 ,t T  with a given initial 

value 0y H  prescribed at the time 0t  by 

  0 ,

0 0

( ) ( ) ( ( )) ( )( ), 0

( )

t Ty t Ay t F y t B u t t T

y t y

      



  (1.2) 

where the state trajectory 0:[ , ]y t T H  belongs to  2
0 , ;L t T H , the control ( )u  belongs to V, 

and    
0

2
0, : , ;t TB V L t T H is a bounded linear operator for which 

    0 00,, ( )( ) ( )( ),   for all Tt TB u t B u t t t T     . 

Assumptions H3.1 – H3.3, taken together, imply that the Cauchy problem (1.2) has a unique 

mild solution  2
0( ) , ;y L t T H   satisfying the variation of parameters formula 

  00
0 0 0,( ) ( ) ( ) ( ( )) ( )( ) ,

t

t Tt
y t S t t y S t s F y s B u s ds t t T          .  (1.3) 

Motivated by Definition 2.1, we can use (1.3) to formulate the definition of approximate 
controllability as follows. 

Definition 3.1  Let 0y H . System (1.2) is approximately controllable on  0 ,t T   if the 

reachable set given by  

         00
0 0 0 0 ,,  such that ( ) ( ) ( ( )) ( )( )

T

T T t Tt
R t z u V S T t y S t s F y s B u s ds              (1.4) 
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where ( )y   is the solution of (1.2) corresponding to u, is dense in H, for every initial condition 

0y H . 

Equivalently, for any 0   and T H   there exists a control ( )u V    such that  

   00
0 0 ,( ) ( ) ( ( )) ( )( )

T

T t Tt
H

S T t y S t s F y s B u s ds           ,  (1.5) 

where ( )y  is the solution of (1.2) corresponding to ( )u V   . 

 

The following is the main sufficient condition imposed on (1.1) in order to guarantee the 
approximate controllability of (1.1) on [0, T]: 

Assumption H3.4:  For every 0  and  2
0( ) , ;p L t T H  , there exists ( )u V  such that  

i.)    00 ,( ) ( ) ( )( )
T

t Tt
H

S t s p s B u s ds       ; 

ii.)   there exists a positive constant BM  such that      2
20 0

0
, , ;, ;

( ) ( )Bt T L t T HL t T H
B u M p   , for all 

 2
0( ) , ;p L t T H  ; and 

iii.) The product 0( )B FM M T t  is sufficiently small. 

 

The following theorem is established in (Zhou, 1983). 

Theorem 3.2  System (1.1) is approximately controllable on [0, ]T  (in the sense of Definition 

3.1, suitably modified) if assumptions H3.1 – H3.3 are satisfied and there exists some  0 0,t T  

for which assumption H3.4 holds. 

 

Remark  Assumption H3.4 implies that the intercept system (1.2) corresponding to 0t  is 

approximately controllable. Also, assumption H3.4 is satisfied if, for instance, the range of the 

operator B is dense in 2 (0, ; )L T H . 

Naito (Naito, 1987) studied (1.1) (with 0 0y  , for simplicity) under arguably simpler 

assumptions that avoid imposing inequality conditions involving the system components. 
Precisely, assumption H3.1 was weakened to  
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Assumption H3.5: : ( )A dom A H H  is a linear operator that generates a strongly 

continuous semigroup  ( ) : 0S t t T   on H. 

This assumption, together with assumptions H3.2 and H3.3, ensure the uniqueness of mild 

solutions to (1.1), for every 2 (0, ; )u L T V .   

The following three conditions were imposed in place of assumption H3.4:  

Assumption H3.6:  The solution mapping  2: (0, ; ) [0, ];W L T V C T H defined by  

  0
( )( ) ( ) ( ) ( ( )) ( )( ) , 0

t
Wy t y t S t s F y s Bu s ds t T       

is compact. (Here,  [0, ];C T H is the space of continuous H-valued functions on [0,T].) 

Assumption H3.7:  For every 2 (0, ; )p L T H , there exists  cl rng( )q B such that    

 
0 0

( ) ( ) ( ) ( )
T T

S T s p s ds S T s q s ds    . 

Assumption H3.8:   :F H H is such that there exists a positive constant FM  such that  

( ) ,   for all FH
F h M h H  .  

Remarks 

1. If assumption H3.5 is strengthened to “A generates a compact semigroup on H,” then 
assumption H3.6 automatically holds. 

2.  Assumption H3.7 is equivalent to the condition 2 (0, ; ) cl(rng( )) ker( )L T H B   , where the 

mapping 2: (0, ; )L T H H  is defined by 
0

( ) ( ) ( )
T

p S T s p s ds   .  

 

The following result is established in (Naito, 1987). 

Theorem 3.3  If assumptions H3.2, H3.3, and H3.5 – H3.8 are satisfied, then (1.1) (with 0 0y  ) 

is approximately controllable on [0, ]T .   

An estimate of the diameter of the set of admissible controls is also obtained when the following 
additional assumption is imposed: 

Assumption H3.9:  There exists a positive constant BM  such that  
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 2 2(0, ; ) (0, ; )BL T V L T H
u M Bu  , for all 2 (0, ; )u L T V .  (1.6) 

Yamamoto and Park (Yamamoto and Park, 1990) studied the same problem for parabolic 
equations with uniformly bounded linear part. 

In tandem with the 1983 work, a slightly more general abstract semilinear system of the form 

 
0

( ) ( ) ( ( ), ( )) ( ), 0

(0)

y t Ay t F y t u t Bu t t T

y y

     
 

  (1.7) 

where :[0, ]y T H  is the state trajectory and H is a Hilbert space, the control ( )u   belongs to 
2 (0, ; )L T U  and takes values in a Hilbert space U, :A H H  is a linear operator on H,  

:F H U H   is a nonlinear operator, and :B U H  is a bounded linear operator is 
considered in (Zhou, 1984). 

The following assumptions are imposed in this paper: 

Assumption H3.10: :B V H  is a bounded linear operator such that there exists a positive 

constant BM  for which 

 BV H
u M Bu  , for all u U .  (1.8) 

Assumption H3.11:  :F H U H  is a nonlinear operator for which there exist positive 

constants 1M and 2M  such that  

1 1 2 2 1 1 2 2 1 2 1 2 1 2( , ) ( , ) ,   for all ,  and ,
H H U

F y u F y u M y y M u u y y H u u U       . 

 

Assumptions H3.5, H3.10, and H3.11, taken together, imply that for each  2 0, ;u L T H and 

0y H , the Cauchy problem (1.7) has a unique mild solution  2
0( ) ( ; , ) 0, ;y y y u L T H     

satisfying  

  
0

0 0( ) ( ) ( ) ( ( ), ( )) ( ) , 0
t

t
y t S t t y S t s F y s u s Bu s ds t T       .  (1.9) 

The approximate controllability result for (1.7) is formulated using the family of associated 
quadratic optimal control problems given by 

 
0

inf ( ; )J u h 
, where  2

2 2

0, ;
( ; ) ( ) ( )

H L T U
J u h y T h u      . (1.10) 
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It can be shown that for every h H and 0  , there exists a control  2( ) 0, ;u L T U   such that 

 
 2 0, ;

( ; ) inf ( ; )
u L T U

J u h J u h  


 .  (1.11) 

The following theorem is established. 

Theorem 3.4  System (1.7) is approximately controllable on [0, ]T  (in the sense of Definition 

3.1, suitably modified) if and only if for every ,h H   

 
0

lim ( ; ) 0J u h  
 .  (1.12) 

Next, Mahmudov (Mahmudov, 2003) investigated the following variant of (1.7)  

 
0

( ) ( ) ( , ( ), ( )) ( ), 0

(0)

y t Ay t F t y t u t Bu t t T

y y

     
 

  (1.13) 

where :[0, ]F T H U H    is a nonlinear operator and all other mappings are as in (1.7).   

Approximate controllability results for (1.13), as well as a stochastic variant of (1.13), are 
formulated under the basic assumption of approximate controllability of the associated linear 
system. The following assumptions are imposed: 

Assumption H3.12:  H is a separable reflexive Banach space and U is a Hilbert space. 

Assumption H3.13: : ( )A dom A H H  generates a compact semigroup  ( ) : 0S t t T   on 

H. 

Assumption H3.14:  :[0, ]F T H U H    is a continuous nonlinear operator for which there 

exists a positive constant FM  such that  

( , , ) ,   for all ( , , ) [0, ]FH
F t h u M t h u T H U    .  

Assumption H3.15: The linear system corresponding to (1.13) is approximately controllable.  

 

Under these conditions, the following theorem is proved.  

Theorem 3.5  If assumptions H3.12 – H3.15 are satisfied, then (1.13) is approximately 
controllable on [0, ]T . 
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The proof of this result involves a constructive approach for approximate controllability of 
semilinear evolution equations and is based on a characterization of a symmetric positive 
operator in terms of strong (weak) convergence of a sequence of (resolvent) operators. This 
result can be applied to both distributed and lumped controls. 

 
Dauer and Mahmudov (Dauer and Mahmudov, 2002) consider a version of (1.13) with finite 

delay. Precisely, let   ,0 ;C C h H   be the space of continuous functions from [ ,0]h  into H 

equipped with the usual supremum norm and consider the system  

 
 

0

0

(0) ( ) ( ) (0) ( ) ( , , ( )) ( ) , 0

( ) ( ), 0

t

t st
y y t S t S t s F s y u s Bu s ds t T

y h



   

       


   

   (1.14) 

where  ( ) : 0S t t T   is a linear semigroup on H, : [0, ]F T H U H    is a nonlinear 

operator; C  ; and y, u, and B are as in (1.13). 

The following assumptions are imposed: 

Assumption H3.16:   ( ) : 0S t t T   is a compact semigroup on H. 

Assumption H3.17:  :[0, ]F T C U H    is a continuous nonlinear operator for which there 

exists a positive constant *
FM  such that  

*( , , ) ,   for all ( , , ) [0, ]FH
F t u M t u T C U     .  

Assumption H3.18:   0, 0TR     as 0   in the strong operator topology, where 

    1

0 0, T TR I 


    and * *
0 0

( ) ( )
TT S T s BB S T s ds    .  

 

Remark  Assumption H3.18 holds if and only if the associated linear system  

 
( ) ( ) ( ), 0

(0) (0)

y t Ay t Bu t t T

y 
    

 
  

is approximately controllable on [0, ]T . 

The following theorem is established: 
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Theorem 3.6  If assumptions H3.16 – H3.18 are satisfied, then (1.14) is approximately 
controllable on [0, ]T . 

The papers summarized above have served as springboards for related investigations in a 
plethora of different directions in which the growth conditions imposed on the nonlinear forcing 
terms are weakened to growth conditions of a non-Lipschitz type and those in which the classical 
initial condition is replaced by a so-called nonlocal initial condition.  Motivated by physical 
problems, Byszewski (Byszewski, 1991) introduced the notion of a Cauchy problem equipped 
with a nonlocal initial condition of the form  

 0(0) ( )y g y y  ,  (1.15) 

where   : 0, :g C T H H is a given function satisfying an appropriate growth condition. The 

literature regarding existence theory of solutions of abstract evolution equations equipped with 
such nonlocal initial conditions has since flourished.  More recently, researchers have become 
interested in controllability issues of such systems; see (Mahmudov and Zorlu, 2013), (Sakthivel 
et al., 2011), (Ge, et al., 2016), and (Zhang, et al., 2015).  

Approximate controllability results for abstract second-order equations governed by the 
generator of a strongly continuous cosine family have been established using similar fixed-point 
techniques (Mahmudov and McKibben, 2013). The extension of the theory to fractional 
nonlinear differential inclusions has been provided in (Sakthivel, et al., 2013) and to the case of 
time-dependent differential inclusions with finite delay and impulsive effects in (Grudzka and 
Rykaczewski, 2014).  

The extension of the theory of approximate controllability of deterministic abstract systems to 
abstract stochastic systems driven by Brownian motion, fractional Brownian motion, and Levy 
jump processes continues to be a very active research direction.  We refer the reader to the 
following papers and the references included therein: (Bashirov and Mahmudov, 1999), 
(Mahmudov, 2003), and (Mahmudov and McKibben, 2006).    

 

4.  Fractional Approximate Controllability  

The concept of a non-integral derivative arises frequently in the mathematical modeling of 
phenomena across disciplines. Indeed, fractional derivatives arise in the mathematical modeling 
of phenomena in areas such as aerodynamics, chemistry, control theory, electrodynamics of 
complex media, engineering, physics, and porous media; see the references in (Sakthivel, et al., 
2011) and (Zhang, et al., 2015). Fractional derivatives can more effectively used to describe 
memory and the hereditary properties of certain materials and processes. Heymans and Podlubny 
(Heymans and Podlubny, 2006) showed that fractional derivatives of quantities had actual 
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physical meaning in viscoelasticity. Further, Wang points out in (Wang, et al., 2015) that 
fractional diffusion equations more accurately model anomalous diffusion in which a plume of 
particles spreads in a manner different from what the classical diffusion equation predicts.  A 
specific third-order dispersion equation is investigated in (Sakthivel and Mahmudov, 2011).  

We begin by considering abstract fractional nonlinear control systems of the form   

 
0

( ) ( ) ( )( ) ( , ( )), 0

(0)

c q
tD y t Ay t Bu t f t y t t T

y y

     



  (1.16) 

where the state function :[0, ]y T H  and H is a Hilbert space; the control function ( )u   

belongs to 2 (0, ; )L T V  where V is a another Hilbert space V ; : ( )A dom A H H   is a linear 

operator on H that generates a strong continuous semigroup  ( ) : 0S t t   on H; :B V H  is a 

bounded linear operator; :[0, ]f T H H  is a given function; 0y H ; and c qD  is the Caputo 

fractional derivative of order 0 < q < 1 defined as follows: 

Definition 4.1  

i.) The fractional integral of order  > 0 with lower limit 0 for a function  : 0,g     is 

defined as  

 1
1
( ) 0

( )

( )
( ) , 0

t g s

t s
I g t ds t


  
  , (1.17) 

provided the right-side is pointwise defined on  0,  , where  is the gamma function.  

ii.) The Riemann-Liouville derivative of order  > 0 with lower limit 0 for a function 

 : 0,g     is given by  

 
( )

1
1

( ) 0

( )

( )
( ) , 0, 1

nn

n n

tL d
n dt

g s

t s
D g t ds t n n


    

      . 

iii.)  The Caputo derivative of order  > 0 with lower limit 0 for a function  : 0,g     is 

given by  

 
1

( )
!

0

( ) ( ) (0) , 0, 1
k

n
c L kt

k
k

D g t D g t g t n n  




 
      

 
 . 

 The integral equation  

  1 1
0 0 0

( ) ( ) ( ) ( ) ( , ( )) ( ) ( ) ( ) ,
t tq q

q q qy t t y t s t s f s y s ds t s t s Bu s ds             (1.18) 
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where 

 

  
 

 1 1

0

0

11

( 1)1 11
!

1

( ) ( ) ,

( ) ( ) ,

( ) 0,

( ) ( 1) sin( ), for 0,

q q

q
q q

q
q q

q qq

nqn qn
q n

n

t S t d

t q S t d

w

w n q

    

    

   

   





  


   







 

   







  

is associated with (1.16) in order to define the following notion of mild solution of (1.16) for a 
given control u. 

Definition 4.2 A continuous function :[0, ]y T H is a mild solution of (1.16) if y satisfies the 

integral equation (1.18).   

The notion of approximate controllability of the linear fractional control system  

 
0

( ) ( ) ( )( ), 0

(0)

q
tD y t Ay t Bu t t T

y y

    



  (1.19) 

is a natural generalization of the notion of approximate controllability for the linear control 
system (0.1).  The first of two main results established in (Sakthivel, et al., 2011) concerns the 
approximate controllability of (1.16) and is formulated under the following assumptions: 

Assumption H4.1: : ( )A dom A H H  generates a compact semigroup  ( ) : 0S t t T   on H. 

Assumption H4.2: The function :[0, ]f T H H  is such that  

i.)    for every [0, ]t T , the function  , :f t H H  is continuous; 

ii.)     for every ,h H the function  , :[0, ]f h T H  is strongly measurable; 

iii.) :[0, ]f T H H  is jointly continuous on [0, ]T H and there exists a positive constant 

fM  for which ( , ) ,   for all ( , ) [0, ]fH
f t h M t h T H   ; and  

iv.)  there exists a constant 1 [0, ]q q  and   
1
1 [0, ]; 0,qm L T   such that ( , ) ( )

H
f t h m t , 

for all h H  and almost all [0, ]t T .   

Assumption H4.3: The linear system (1.18) is approximately controllable on [0, ]T .  
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Using the technique introduced in (Mahmudov, 2003), Sakthivel et al. establishes the following 
result: 

Theorem 4.3 If assumptions H4.1 – H4.3 are satisfied, then the fractional system (1.16) is 
approximately controllable on [0, ]T .  

The second main result in this paper concerns a nonlocal variant of (1.16), namely  

 
0

( ) ( ) ( )( ) ( , ( )), 0

(0) ( )

c q
tD y t Ay t Bu t f t y t t T

y g y y

     


 
  (1.20) 

where   : 0, :g C T H H is a given function satisfying the following global Lipschitz growth 

condition: 

Assumption H4.4:  There exists a positive constant gM such that for all 1 2,z z H ,  

   1 2 1 20, ;
( ) ( ) .gC T H H

g z g z M z z     

 

The second main result established in (Sakthivel, et al., 2011) is 

Theorem 4.4   If assumptions H4.1 – H4.4 are satisfied, then the nonlocal fractional system 
(1.19) is approximately controllable on [0, ]T .  

 

Next, Liu and Li (Liu and Li, 2015) investigate the following fractional control system related to 
(1.16):  

 
1

00

( ) ( ) ( )( ) ( , ( )), 0

( )

q
t

q
t t

D y t Ay t Bu t f t y t t T

I y t y


     



  (1.21) 

Here, A, f, B, and 0y  are as in (Sakthivel, et al., 2011), with the exception that the Hilbert space 

V is specifically taken to be  [0, ];pL T U , p > 1, (the space of p-integrable U-valued functions 

on (0,T)), the initial condition is specified for  1

0
( )q

t t
I y t


(cf. (1.17)) instead of y(0), and the 

Caputo fractional derivative c q
tD  in (1.16) is replaced by the Riemann-Liouville fractional 

derivative q
tD .   

The integral equation associated with (1.21) (similar to (1.18)) is given by  
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 1 1 1
0 0 0

( ) ( ) ( ) ( ) ( , ( )) ( ) ( ) ( )
t tq q q

q q qy t t t y t s t s f s y s ds t s t s Bu s ds            .  (1.22) 

This leads to the following definition of a mild solution of (1.21): 

Definition 4.5 A :[0, ]y T H is a mild solution of (1.21) if y satisfies the integral equation 

(1.22) and belongs to     1
1 [0, ]; : ( ) [0, ];q

q T H y t y t T X
    , which is a Banach space 

when equipped with the norm  
1

1sup ( ) : [0, ]
q

q

H
y t y t t T



 
.   

  

The results established in this paper are motivated by those in (Sakthivel, et al., 2011), but the 
underlying assumptions imposed on the semigroup generated by A is weakened and the growth 
conditions imposed on the nonlinear term f are different.  Precisely, the following conditions are 
imposed: 

Assumption H4.5:  : ( )A dom A H H  generates a differentiable semigroup  ( ) : 0S t t T   

on H. 

Assumption H4.6: The function :[0, ]f T H H  is such that  

i.)    there exists a function  ( ) [0, ]; (0, )pL T     (where 1
qp   ) and a positive constant fM  

such that   

 1( , ) ( ) q
fH H

f t h t M t h   , for almost every [0, ]t T  and all h H ; and 

ii.)  there exists a positive constant fM  such that   

 
1

1
1 2 1 2( , ) ( , )

q

q
fH

f t h f t h M t h h


  


, for all 1 2,h h H and [0, ]t T .  

Assumption H4.7: For every 0   and   0, ;pL T H , there exists a control 

  0, ;pu L T U for which  

i.)  1

0
( ) ( ) ( ) ( )( )

T q
q

H
T s T s s Bu s ds      ; 

ii.) there exists a positive constant BM (independent of   0, ;pL T H ) such that 

( ) ( )p pBL L
Bu M    ; and  
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iii.)  
1

111
1

( ) 1

p
p

pS f B
q S f

M M M p
T E M M T

q pq



 
    

, where  sup ( ) : 0S H
M S t t T   . 

 

It can be shown that under assumptions H4.5 and H4.6, for each control function u V , the 
control system (1.21) has a unique mild solution in the sense of Definition 4.5. 

Under these assumptions, Liu and Li prove the following theorem: 

Theorem 4.6 If assumptions H4.5 – H4.7 are satisfied, then the fractional system (1.21) is 
approximately controllable on [0, ]T .  

 

Wang, et al. (Wang, et al., 2015) investigate the related fractional partial differential system 

 
( , ) ( , ) ( )( , ) ( , ( , )), 0 2 , 0

( ,0) 0

c q
tD y z t Ay z t Bu z t f t y z t z t T

y z

       



  (1.23) 

where the state function ( , )y t  and the control function ( , )u t  take values in  2 0, 2L  ; 

   2 2: ( ) 0, 2 0, 2A dom A L L   is a linear operator; and    2 2: 0,2 0,2B L L   is a 

bounded linear operator.  

Definition 4.7 A function     2 2( , ) 0, ; 0, 2y z t L T L   is a mild solution of (1.23) if y satisfies 

the integral equation 

  1

0
( , ) ( ) ( ) ( , ) ( , ( , ))

t q
qy z t t s t s Bu z s f s y z s ds    ,  

for all 0 2z   and 0 t T  . 

 

They establish the approximate controllability of (1.23) under the following conditions: 

Assumption H4.8:    2 2: ( ) 0, 2 0, 2A dom A L L    generates a compact analytic 

semigroup  ( ) : 0S t t T  on  2 0, 2L  ; 

Assumption H4.9:  The function    2 2: [0, ] 0, 2 0, 2f T L L   is such that  

i.)    for every [0, ]t T , the function      2 2, : 0,2 0, 2f t L L   is continuous; 
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ii.)     there exists a function   2
1

[0, ]; 0,2jL T L  , where 0 < j < q, such that   

    2 21 2 1 20,2 0,2
( , ) ( , ) ( )

L L
f t h f t h t h h

 
   ,  

  2
1 2for all ( , ), ( , ) [0, ] 0,2t h t h T L   ; and 

iii.)  there exists a positive constant fM  such that  2 0,2
( , ) fL

f t h M

  , for all 

 2( , ) [0, ] 0,2t h T L   .  

Assumption H4.10:   0, 0TR     as 0   in the strong operator topology. (Here,  

     11 * *
0 0 00

( ) ( ) ( )  and ,
TT q T T

q qT s T s BB T T s ds R I   
         , 

where *B and *
q are the adjoints of the operators B and q , respectively.   

Assumption H4.11: 1

1

11
1

(1 )
j

j

qS
L

M q j
T

q q j




 
    

, where  sup ( ) : 0S H
M S t t T   . 

Under these assumptions, Wang, et al. prove the following theorem: 

Theorem 4.8 If assumptions H4.8 – H4.11 are satisfied, then the fractional partial differential 
system (1.23) is approximately controllable on [0, ]T .  

 

The theory of control systems with impulses has been studied with increasing vigor over the past 
decade. Impulse control problems arise, for instance, when one considers models of chaotic 
systems and investment decisions in financial mathematics. Sudden jumps at certain time points 
in the evolution of processes arising in biotechnology, pharmacokinetics, population dynamics, 
and radiation of electromagnetic waves, for instance, are examples of such impulsive behavior.  

The first study on impulsive systems that we consider is the work in (Ge, et al., 2016). Ge, et al. 
consider a nonlocal variant of (1.16) equipped with jumps at finitely many time points. 
Specifically, they study  

 

 

( ) ( ) ( )( ) ( , ( )), 0 ,

(0) ( ),

( ) , 1,...,
i

c q
t i

i it t

D y t Ay t Bu t f t y t t T t t

y g y

y J y t i p

      
 
  

  (1.24) 
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where 1 20 ... pt t t T      and ( ) ( ),
i

i it t
y y t y t

 
    where ( ) and ( )i iy t y t   represent the 

left- and right-limits of y(t) at it t  . The operators A and B are as above and the functions f, g, 

and iJ  are suitable mappings on which conditions will be imposed later in the manuscript.  

The collection of functions given by  

  
( ) is continuous at , left continuous at 

[0, ]; :[0, ]  and lim ( ) exists for 1, 2,...,
i

i i

t t

y t t t t
PC T H y T H y t i p



     
  

  (1.25) 

equipped with the norm  sup ( ) : 0
PC H

y y t t T   is a Banach space. Also, for any R > 0, 

the following set is needed in the formulation of Ge et al.’s main results: 

   [0, ]; : ( ) ,  for all [0, ]R Ry PC T H y t B t T     ,  (1.26) 

where  :R H
B h H h R   is the closed ball of radius R in the space H.   

The work in (Ge, et al., 2016) seems to have been inspired by the final remark in (Sakthivel, et 
al., 2011). In addition to assumptions H4.1 and H4.2, they impose the following restriction on 
the jump functions Ji : 

Assumption H4.12: The functions  : 1,...,iJ H H i p   are continuous. 

The authors establish two main approximate controllability results for (1.24) depending on the 
growth condition imposed on the nonlocal function g.  For the first result, they assume: 

Assumption H4.13: The mapping  : [0, ];g PC T H H is such that g(0) = 0 and there exists a 

positive constant gM for which  

 1 2 1 2( ) ( ) gH PC
g h g h M h h    , for all 1 2,h h H .  

 

Under assumptions H4.1, H4.2 (suitably modified so that condition (iii) is applied in the second 

variable in f (t, h) to the closed ball RB , for each R > 0, rather than on the entire space), H4.12, 

and H4.13, the authors use a standard compactness argument to show that for each bounded 

control 2 (0, ; )u L T V , the fractional impulsive system (1.24) has at least one mild solution on 

[0, ]T  provided that the data are sufficiently small.  
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Remarks 

1. Uniqueness is no longer guaranteed because of the weakened growth restriction on f. 

2. By the phrase “the data are sufficiently small,” we simply mean that an inequality is 
imposed where a (typically rather technical-looking) quantity involving the growth constants and 
parameters arising in the Cauchy problem is assumed to be less than 1. Imposing such a 
condition is standard practice, is usually done so in order to ensure that fixed-point methods can 
successfully be used to establish the result.  

In order to obtain the approximate controllability result for (1.24), the authors further assume that 
assumption H4.10 holds, as well as the following enhancement of assumptions H4.12 and H4.13: 

Assumption H4.14:  The functions  : [0, ];g PC T H H and  : 1,...,iJ H H i p  are 

uniformly bounded on  [0, ];PC T H . 

The following result is then established: 

Theorem 4.9  If assumptions H4.1, H4.2 (suitably modified) and H4.12 – H4.14 are satisfied, 
then (1.24) is approximately controllable on [0, ]T , provided that the data are sufficiently small. 

 

The second main result in (Ge, et al., 2016) is obtained by weakening the growth condition on 
the nonlocal initial condition g. Specifically, assumption H4.13 is weakened to the following: 

Assumption H4.15: The function  : [0, ];g PC T H H is continuous and for any 0R   and 

any , Rx y w , there exists 1( ) (0, )R t    such that   

  ( ) ( ), for all , ( ) ( ).x s y s s T g x g y      

As before, under this assumption, provided that the data are sufficiently small, the authors are 
able to establish the existence of a mild solution of (1.24), and subsequently the approximate 
controllability of (1.24) under the additional assumption H4.14 using a similar compactness 
argument.  

Next, Zhang, et al. study the following nonlocal impulsive fractional system similar to (1.24):  

 

 
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  (1.27) 
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Here, : ( )A dom A H H  is a linear operator that generates an analytic semigroup on H.  As 

such, the space H used in the domains and ranges of the mappings B, f, g, etc, is often replaced 

by the domain of the fractional power of A,  dom A  ( 0 1  ), which is known to be a 

Banach space when equipped with the graph norm of A , denoted by 


 . More specifically, 

 :B V dom A  is a bounded linear operator;      : 1,...,iJ dom A dom A i p   , 

   :[0, ]f T dom A dom A H    , and     : [0, ];g PC T dom A dom A  .  

The mapping G defined by 

 
0

( ) ( , ) ( )
t

Gy t K t s y s ds    (1.28) 

 is a Volterra integral operator with kernel   ; 0,K    , where   , : 0t s s t T     .  

The space in (1.25) is naturally modified for studying (1.27) by replacing H by  dom A ; we 

denote this space by   [0, ];PC T dom A .  A mild solution of (1.27) is then naturally defined as 

follows: 

Definition 4.10  A function   [0, ];y PC T dom A  is a mild solution of (1.27) if for any 

2 (0, ; )u L T V , the integral equation  

 

    
  

1
0 0

0

( ) ( ) ( ) ( ) ( ) ( ) ( , ( ), ( ))

( ) ( )
i

t q
q q

q i i i
t t

y t t y g y t s t s Bu s f s y s Gy s ds

t t J y t

 







 

     

 




  (1.29) 

is satisfied.  

 

The authors use arguments similar to those in the papers reviewed above (this time using the 
Krasnoselskii fixed-point theorem) to argue that (1.27) is approximately controllable on [0, ]T  

under the following assumptions: 

Assumption H4.16:  The function    :[0, ]f T dom A dom A H    is continuous and 

satisfies the following: 

i.) there exist a constant (0, (1 ) )q    and functions     
1

0, ; 0,R L T    such that  
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  sup ( , , ) : ( )RH
f t y Gy y R t


   and 

1

lim R L

r R





   ; and 

ii.) f is bounded in  dom A . 

Assumption H.17: The mapping     : [0, ];g PC T dom A dom A   satisfies the usual global 

Lipschitz condition (cf. assumption H4.13, for instance) and g is bounded in  dom A . 

Assumption H.18: The mappings      : 1,...,iJ dom A dom A i p    satisfy the usual 

global  Lipschitz condition and are bounded in  dom A . 

Assumption H.19: The linear system associated with (1.27) is approximately controllable on 
[0, ]T .   

 

Precisely, the authors prove the following result: 

Theorem 4.11  If assumptions H4.16 - H4.19 are satisfied, then (1.27) is approximately 
controllable on [0, ]T , provided that the data is sufficiently small. 

We wrap up our discussion of fractional control systems with a brief comment on Riemann-
Liouville fractional differential inclusions. The focus of this discussion is the recent work of 
Yang and Wang (Yang and Wang, 2016). They investigate the approximate controllability for 
Riemann-Liouville neutral fractional differential inclusions of the form 

 
 
 1

00
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( ) ( , ( ))

L q
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q
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I y t h t y t y



      


 
  (1.30) 

where : ( )A dom A H H  is a linear operator that generates an analytic semigroup on H, B is a 

bounded linear operator (as above), : [0, ]h T H H  is a given mapping, and 

 :[0, ] ( ) 2 :YF T H H Y Y      is a nonempty, bounded, closed, convex multifunction.  

Definition 4.12  A function   1 0, ;y T H is a mild solution of (1.30) if the following are 

satisfied: 

i.)  1
00

( ) ( , ( ))q
t t

I y t h t y t y


  , 
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ii.) there exists    1 0, ; : ( ) ( , ( )), for a.e. [0, ]f f L T H f t F t y t t T    for which 
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The existence of a mild solution of (1.30), as well as the approximate controllability of (1.30) on 
[0,T], are obtained under conditions very similar to those used in (Sakthivel, et al., 2011) and 
(Zhang, et al., 2015) with the exception that particular care must now be taken to suitably modify 
the conditions previously imposed on the single-valued nonlinearity f to obtain appropriate 
conditions for the multifunction F.  Otherwise, the arguments employed are similar in spirit to 
those used in the papers above. 

The study of the approximate controllability of fractional differential systems continues to thrive. 
Other works concerning the approximate controllability of fractional integrodifferential systems 
(Ganesh, et al., 2013), delay fractional systems (Kumar and Sukavanam, 2013), and other 
nonlinear fractional differential systems as in (Mahmudov and Zorlu, 2014) and (Sakthivel, et 
al., 2013) have appeared in the literature recently. Also, Mahmudov and McKibben studied such 
abstract systems in which the derivative of the state function was a generalized version of the 
Riemann-Liouville derivative in (Mahmudov and McKibben, 2015).  There are many other 
directions that can be taken with this work that will have even broader applications in different 
disciplines.  

 

5. Concluding Remarks 

We have reviewed the approximate controllability of infinite-dimensional linear, nonlinear, and 
fractional control systems in this paper. The assumption of the approximate controllability of the 
linear part associated with nonlinear systems was key, natural, and readily verifiable, and 
permeated investigations of approximate controllability for second-order systems, impulsive 
systems, delay systems, fractional differential systems, and stochastic systems.  The theory 
discussed has applications in a great many different disciplines and offers a unifying structure in 
which to study such phenomena.  There is much work that lies ahead. 

 

References 

Bashirov, A. and Mahmudov, N.I. (1999), On concepts of controllability for deterministic and 
stochastic systems, SIAM J. Control Optim., 37(6): 1808 – 1821.  
 
Bsyzewski, L. (1991), Theorems about the existence and uniqueness of solutions of a semilinear 
evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162: 494 – 505.  



26 
 

 
Dauer, J.P. and Mahmudov, N.I. (2002), Approximate controllability of semilinear functional 
equations in Hilbert spaces, J. Math. Anal. Appl., 273: 310 – 327.  
 
Fattorini, H.O. (1975), Local controllability of a nonlinear wave equation, Math. Systems 
Theory, 9: 30 – 45. 
 
Fattorini, H.O. (1967), On complete controllability of linear systems, J. Differential Equations,  
3: 391 – 402.  
 
Fattorini, H.O. (1966), Some remarks on complete controllability, SIAM J Control, 4: 686 – 694.  
 
Ganesh, R., Sakthivel, R., Mahmudov, N.I., and Anthoni, S. (2013), Approximate controllability 
of fractional integrodifferential evolution equations, J. Appl. Math. Article ID 291816, 7 pages. 
 
Ge, F., Zhou, H., and Kou, C. (2016), Approximate controllability of semilinear evolution 
equations of fractional order with nonlocal and impulsive conditions via an approximating 
technique, Appl. Math. Comput., 275: 107 – 120.  
 
Grudzka, A. and Rykaczewski, K. (2014), On approximate controllability of functional 
impulsive evolution inclusions in a Hilbert space, J. Optim. Theory Appl., Article ID 
10.1007/s10957-014-0671-y, 26 pages. 
 
Henry, J. (1978), Etude de la controlabilité de certains équations paraboliques non-linéaires, 
Thése d’état, Paris. 
 
Heymans, N. and Podlubny, I. (2006), Physical interpretation of initial conditions for fractional 
differential equations with Riemann-Lioville fractional derivatives, Rheol. Acta, 45: 765 – 771.  
 
Kalman, R.E. (1960), A new approach to linear filtering and prediction problems, Trans. ASME 
Ser. D, J Basic Engineering, 82: 35 – 45.  
 
Kalman, R.E., Ho, Y.C., and Narendra, K.S. (1963), Controllability of linear dynamical systems, 
Contributions to Differential Equations, 2: 189 – 213.  
 
Ke, T., Obukhovskii, V., Wong, N, and Yao, J. (2012), Approximate controllability for systems 
governed by nonlinear Volterra type equations, Differ. Equ. Dyn. Syst., 20(1): 35 – 52.  
 
Kerboua, M., Debbouche, A., and Baleanu, D. (2013), Approximate controllability of Sobolev 
type nonlocal fractional stochastic dynamic systems in Hilbert spaces, Abstr. Appl. Anal., Article 
ID 262191, 10 pages.  
 
Kumar, S. and Sukavanam, N. (2012), Approximate controllability of fractional order neutral 
control systems with delay, Int. J. Nonlinear Sci., 13(4): 454 – 462. 
 



27 
 

Kumar, S. and Sukavanam, N. (2013), Approximate controllability of fractional order semilinear 
delayed control systems, Nonlinear Stud., 20(1): 73 – 83.  
 
Kumar, S. and Sukavanam, N. (2012), Approximate controllability of fractional order semilinear 
systems with bounded delay, J. Differential Equations, 252(11): 6163 – 6174.  
 
Kumar, S. and Sukavanam, N. (2013), On the approximate controllability of fractional order 
control systems with delay, Nonlinear Dyn. Syst. Theory, 13(1): 69 – 78.  
 
Liu, Z. and Li, X. (2015), Approximate controllability of fractional evolution equations with 
Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53(4): 1920 – 1933.  
 
Mahmudov, N.I. (2013), Approximate controllability of fractional neutral evolution equations in 
Banach spaces, Abstr. Appl. Anal., Article ID 531894, 11 pages. 
 
Mahmudov, N.I. (2013), Approximate controllability of fractional Sobolev-type evolution 
equations in Banach spaces, Abstr. Appl. Anal., Article ID 502839, 9 pages.  
 
Mahmudov, N.I. (2003), Approximate controllability of semilinear deterministic and stochastic 
evolution equations in abstract spaces, SIAM J. Control Optim., 42(5): 1604 – 1622. 
 
Mahmudov, N.I. (2003), Approximate controllability of semilinear deterministic and stochastic 
evolution equations in abstract spaces, SIAM J. Control Optim., 42(5): 1604 – 1622.  
 
Mahmudov, N.I. (2013), Approximate controllability of some nonlinear systems in Banach 
spaces, Bound. Value Probl., 2013:50, 13 pages. 
 
Mahmudov, N.I. and McKibben, M.A. (2006), Approximate controllability for second-order 
neutral stochastic evolution equations, Dynamics of Continuous, Discrete and Impulsive Systems 
Series B: Applications & Algorithms 1, 13(5): 619 - 634. 
 
Mahmudov, N.I. and McKibben, M.A. (2006), Controllability results for a class of abstract first-
order McKean-Vlasov stochastic evolution equations, Dynamic Systems and Appl., 15: 357 - 
374. 
 
Mahmudov, N.I. and McKibben, M.A. (2015), On the approximate controllability of fractional 
evolution equations with generalized Riemann-Liouville fractional derivative, in Special Issue 
“Recent Developments on Fixed Point Theory in Function Spaces and Applications to Control 
and Optimization Problems,” Journal of Function Spaces, vol. 2015, Article ID 263823, 9 pages.  
 
Mahmudov, N.I. and Zorlu, S. (2013), Approximate controllability of fractional integro-
differential equations involving nonlocal initial conditions, Bound. Value Probl., 2013:118, 16 
pages. 
 
Mahmudov, N.I. and Zorlu, S. (2014), On the approximate controllability of fractional evolution 
equations with compact analytic semigroup, J. Comput. Appl. Math., 259: 194 – 204.  



28 
 

 
Naito, R. (1987), Controllability of semilinear control systems dominated by the linear part, 
SIAM J. Control Optim., 25(3): 715 – 722. 
 
Sakthivel, R., Ganesh, R., and Anthoni, S.M. (2013), Approximate controllability of fractional 
nonlinear differential inclusions, Appl. Math. Comput., 225: 708 – 717.  
 
Sakthivel, R., Ganesh, R., Ren, Y., and Anthoni, S.M. (2013), Approximate controllability of 
nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18(12): 3498 – 
3508.  
 
Sakthivel, R. and Mahmudov, N.I. (2011), On the approximate controllability of the nonlinear 
third-order dispersion equation, Appl. Math. Comput., 217: 8507 – 8511.  
 
Sakthivel, R. and Ren, Y. (2013), Approximate controllability of fractional differential equations 
with state-dependent delay, Results Math., 63(3-4): 949 – 963.  
 
Sakthivel, R., Ren, Y., and Mahmudov, N.I. (2011), On the approximate controllability of 
semilinear fractional differential systems, Comput. J. Math. Appl., 62(3): 1451 – 1459.  
 
Sukavanam, N. and Kumar, S. (2011), Approximate controllability of fractional order semilinear 
delay systems, J. Optim. Theory. Appl., 151(2): 373 – 384.    
 
Triggiani, R. (1975), Controllability and observability in Banach space with bounded operators, 
SIAM J. Control, 13(2): 462 – 491.  

Triggiani, R. (1972), Controllability, observability, and stabilizability of dynamical systems in 
Banach space with bounded operators, Ph.D. thesis, University of Minnesota, Minneapolis.  

Triggiani, R. (1976), Extensions of rank conditions for controllability and observability to 
Banach spaces and unbounded operators, SIAM J. Control. Optim., 14(2): 313 – 338.  

Vijayakumar, V., Ravichandran, V., and Murugesu, C. (2013), Approximte controllability for a 
class of fractional neutral integro-differential inclusions with state-dependent delay, Nonlinear 
Stud., 20(4): 513 – 532.  
 
Wang, F., Wang, P., and Yao, Z. (2015), Approximate controllability of fractional partial 
differential equation, Advances in Difference Equations, vol. 2015:367, Article ID 
10.1186/s13662-015-0692-3, 10 pages. 
 
Yamamoto, M. and Park, J.Y. (1990), Controllability for parabolic equations with uniformly 
bounded nonlinear terms, J. Optim. Theory Appl., 66: 515 – 532.  

Yan, Z. (2012), Approximate controllability of partial neutral functional differential systems of 
fractional order with state-dependent delay, Internat. J. Control., 85(2): 1051 – 1062.  
 



29 
 

Yang, M. and Wang, Q. (2016), Approximate controllability of Riemann-Liouville fractional 
differential inclusions, Appl. Math. Comput., 274: 267 – 281.  
 
Zhang, X., Zhu, C., and Yuan, C. (2015), Approximate controllability of fractional impulsive 
evolution systems involving nonlocal initial conditions, Advances in Difference Equations, vol. 
2015:244, Article ID 10.1186/s13662-015-0580-x, 14 pages. 
 
Zhou, H.X. (1983), Approximate controllability for a class of semilinear abstract equations, 
SIAM J. Control Optim., 21(4): 551 – 565.  
 
Zhou, H.X. (1984), Controllability properties of linear and semilinear abstract control systems, 
SIAM J. Control Optim., 22(3): 405 – 422.  
 


	West Chester University
	Digital Commons @ West Chester University
	8-2016

	On Approximately Controlled Systems
	Nazim I. Mahmudov
	Mark A. McKibben
	Recommended Citation


	Microsoft Word - Approximate Controllability Paper with Nazim - final version August 2016

