
West Chester University
Digital Commons @ West Chester University

Computer Science College of Arts & Sciences

2004

On Constructing the Minimum Orthogonal
Convex Polygon in 2-D Faulty Meshes
Jie Wu
Florida Atlantic University

Zhen Jiang
West Chester University of Pennsylvania, zjiang@wcupa.edu

Follow this and additional works at: http://digitalcommons.wcupa.edu/compsci_facpub

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by the College of Arts & Sciences at Digital Commons @ West Chester
University. It has been accepted for inclusion in Computer Science by an authorized administrator of Digital Commons @ West Chester University. For
more information, please contact wcressler@wcupa.edu.

Recommended Citation
Wu, J., & Jiang, Z. (2004). On Constructing the Minimum Orthogonal Convex Polygon in 2-D Faulty Meshes. Proceedings. 18th
International Parallel and Distributed Processing Symposium, 2004 Retrieved from http://digitalcommons.wcupa.edu/compsci_facpub/
2

http://digitalcommons.wcupa.edu?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/cas?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub/2?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub/2?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wcressler@wcupa.edu


On Constructing the Minimum Orthogonal Convex Polygon in
2-D Faulty Meshes

Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

E-mail: jie@cse.fau.edu

Zhen Jiang
Department of Computer Science

Information Assurance Center
West Chester University
West Chester, PA 19383

E-mail: zjiang@wcupa.edu

Abstract

The rectangular faulty block model is the most commonly
used fault model for designing fault-tolerant and deadlock-
free routing algorithms in mesh-connected multicomputers.
The convexity of a rectangle facilitates simple and efficient
ways to route messages around fault regions using relatively
few or no virtual channels to avoid deadlock. However, such
a faulty block may include many non-faulty nodes which are
disabled, i.e., they are not involved in the routing process.
Therefore, it is important to define a fault region that is con-
vex and, at the same time, to include a minimum number of
non-faulty nodes. In this paper, we propose an optimal so-
lution that can quickly construct a set of minimum faulty
polygons, called orthogonal convex polygons, from a given
set of faulty blocks in a 2-D mesh (or 2-D torus). The for-
mation of orthogonal convex polygons is implemented using
either a centralized or distributed solution. Both solutions
are based on the formation of faulty components each of
which consists of adjacent faulty nodes only, followed by
the addition of a minimum number of non-faulty nodes to
make each component a convex polygon. This provides a
solution to an open problem raised in [15]. Extensive simu-
lation has been done to determine the number of non-faulty
nodes included in the polygon, and the result obtained is
compared with the best existing known result. Results show
that the proposed approach can not only find a set of mini-
mum faulty polygons but also does so quickly in terms of the
number of rounds of information exchanges and updates be-
tween neighbors in the distributed solution.

Key words: 2-dimensional meshes (tori), fault models,
fault tolerance, orthogonal convex polygons, routing.

1 Introduction

Mesh-connected multicomputers, especially those with
low-degree, are one of the simplest and least expensive
structures for building a system using hundreds and even
thousands of processors. Low-degree mesh-connected mul-
ticomputers include meshes and tori (which are meshes
with wraparound connections). Dally [5] and Agarwal [1]
recommended the use of low-degree networks, such as 2-
dimensional (2-D) and 3-dimensional (3-D) meshes (tori),
over high-degree networks, such as hypercubes, for better
performance and cost-effectiveness. In a mesh-connected
multicomputer, processors (also called nodes) exchange
data and coordinate their efforts by sending and receiving
messages through the underlying mesh network. Thus, the
performance of such a system depends heavily on the end-
to-end cost of communication mechanisms. Routing is the
process of transmitting data from one node to another node
in a given system. As the number of nodes in a mesh-
connected multicomputer increases, the chance of failure
also increases. At the same time, applications that run on
such a system are often critical and may have real-time con-
straints. Therefore, the ability to tolerate failure is becom-
ing increasingly important, especially for routing [6].

In designing a fault-tolerant routing algorithm, one of
the most important issues is to select an appropriate fault
model. A good fault model should accurately reflect fault
situations in a real system. It should be defined in such
a way that fault information can be easily established and
maintained. The model should not be overly simplified and,
at the same time, not too complex so that certain objectives,
such as optimization and deadlock-free requirements, are
still obtainable. In this paper, we focus on 2-D meshes (tori)
and, in the subsequent discussion, we use meshes to repre-
sent both meshes and tori.

Most of the literature on fault-tolerant routing uses dis-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



joint rectangular blocks ([2], [3], [4], [7], [10], [18]) to
model node faults (link faults can be treated as node faults)
and to facilitate routing in 2-D meshes. First, a node la-
belling scheme that identifies nodes (faulty and non-faulty)
that cause routing difficulties is defined and such nodes are
called unsafe nodes. Connected unsafe nodes form a faulty
rectangular region. Such a region is also called a rectangu-
lar faulty block, or simply a faulty block.

A faulty block can be easily established and maintained
through message exchanges among neighboring nodes. The
convexity of each faulty block facilitates a simple fault-
tolerant and deadlock-free routing using either relatively
few virtual channels ([4], [10], [12]) or no virtual channel
([17]). The convex feature of a faulty block is a necessary
condition for progressive routing, where the routing process
never backtracks. The absence of backtracking in turn is a
necessary condition for minimal routing, where the desti-
nation is reached through a minimal path from the source.
A fault-tolerant minimal routing algorithm for 2-D meshes
has been developed in [16] using the faulty block model.
There are several studies ([3], [11], [13]) on fault-tolerant
routing that can handle non-rectangular fault regions, such
as H-shape, L-shape, T-shape, U-shape, and +-shape fault
regions. Despite all the desirable features of the faulty block
model, a major problem is that a faulty block may include
many non-faulty nodes treated as faulty nodes (with the un-
safe label). In the worst case, a majority of nodes in a
faulty block are non-faulty. Although some efforts have
been made either to enhance the faulty block definition to
include fewer non-faulty nodes in a faulty block [9] or to
activate some boundary non-faulty nodes in a faulty block
as in [2] and [10], the above problem still exists.

A convex region (polygon) is defined as a region (poly-
gon) P for which a line segment connecting any two points
in P lies entirely within P . If we change the “line seg-
ment” in the standard convex region definition to “horizon-
tal or vertical line segment”, the resultant region is called
an orthogonal convex region (polygon) ([8], [15]). Clearly,
a faulty block is a special orthogonal convex region. In 2-D
meshes, the boundary lines of a region are either horizontal
or vertical, therefore, each region is a polygon. In the sub-
sequent discussion, we use the terms polygon and region
interchangeably. In this paper, we consider the following
problem: For a given set of faulty nodes, find a set of dis-
joint convex polygons that cover all the faulty nodes with
a minimum number of non-faulty nodes included in these
polygons.

The challenge here is not only to conduct a theoretical
study on the feasibility of finding such a smallest orthog-
onal convex polygon but also to search for a practical and
efficient distributed implementation in a system where each
processor knows only the status of its neighbors. In [15], a
simple and efficient distributed algorithm is presented that

determines a set of small orthogonal convex polygons to
cover all the faults in a given faulty block. This approach
consists of two phases. First, a set of disjoint faulty blocks
are constructed from a given set of faulty nodes. Each
faulty block may contain many non-faulty nodes. Then,
each faulty block is partitioned into one or many disjoint
orthogonal convex polygons by removing some non-faulty
nodes from the block. It is shown in [15] that a resultant
region generated after removing non-faulty nodes from the
given faulty block is the minimum orthogonal convex poly-
gon (simply called a faulty polygon) that covers all the faults
in the region. Note that there may be several polygons gen-
erated from a given faulty block. In addition, it is shown that
the number of non-faulty nodes covered in these faulty poly-
gons (from a given faulty block) is no more than that of the
minimum orthogonal convex polygon that includes all the
faulty nodes in the original faulty block. However, for cer-
tain cases, a faulty polygon can be further partitioned, and
more non-faulty nodes in the region can be removed. There-
fore, such a faulty polygon is called sub-minimum faulty
polygon. This brings the following open problem: For a
given faulty block, find a set of disjoint orthogonal convex
polygons that covers all the faults in the faulty block and
contains a minimum number of non-faulty nodes. Clearly,
each faulty polygon is minimum (called minimum faulty
polygon) in the sense that it cannot be replaced by a set of
faulty polygons that include fewer non-faulty nodes.

In this paper, we first provide a centralized solution for
the open problem and, then, an efficient distributed solution
is provided. This approach again consists of two phases.
In the first phase, a set of components are formed, where
each component consists of adjacent faulty nodes with no
non-faulty node. In the second phase, a minimum num-
ber of non-faulty nodes are added to make each component
a convex polygon. Extensive simulation has been done to
determine the number of non-faulty nodes included in the
polygon, and the result obtained is compared with the best
existing known result.

This paper is organized as follows: In Section 2 we pro-
vide some preliminaries including the definition of an or-
thogonal convex polygon, its application in fault-tolerant
and deadlock-free routing in 2-D meshes, and a distributed
formation of a sub-minimum faulty polygon. In Section 3,
we propose an optimal solution for constructing minimum
faulty polygons. An efficient distributed solution is also
provided. In Section 4, simulation results on the aver-
age number of rounds needed to construct minimum faulty
polygons and the number of non-faulty nodes in the poly-
gons are given. Finally, in Section 5, we provide our con-
clusions and ideas for future work.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



2 Preliminaries

2.1 Orthogonal convex polygons

We consider only node faults and assume that faulty
nodes just cease to work. Also, each non-faulty node knows
the status of its neighbors only; that is, there is no priori
global information of fault distribution. A 2-dimensional
(2-D) n � n mesh with n2 nodes has an interior node de-
gree of 4 and a network diameter of 2(n� 1). Each node u
has an address (ux; uy), where ux; uy 2 f0; 1; :::; n � 1g.
Two nodes u: (ux; uy) and v: (vx; vy) are connected if their
addresses differ in one and only one dimension, say dimen-
sion x. Moreover, jux� vxj = 1. Similarly, if they differ in
dimension y, then juy � vyj = 1.

In the following, we give the definition of an orthogonal
convex region.

Definition 1 [15]: A fault region is orthogonal convex if and
only if the following condition holds: For any horizontal or
vertical line, if two nodes on the line are inside the region,
all the nodes on the line that are between these two nodes
are also inside the region.

The difference between a standard convex region and an
orthogonal convex region is that the line in the latter is re-
stricted to only horizontal and vertical, whereas the line in
the former can be along any direction in a standard con-
vex region. In 2-D meshes, each orthogonal convex region
is also an orthogonal convex polygon. Clearly, T-shape,
L-shape, and +-shape (the shadowed region in Figure 1)
fault regions are orthogonal convex polygons, whereas U-
shape and H-shape fault regions are non-orthogonal con-
vex polygons. For example, orthogonal convex region
f(2; 4); (3; 4); (4; 3)g is an L-shape polygon (the shadowed
region in Figure 2).

Note that an orthogonal convex polygon is the same as
a solid fault in the solid fault model [3]. It is shown in [3]
that only four virtual channels are needed around a convex
region to support fault-tolerant and deadlock-free routing.
However, finding an algorithm for computing a smallest
solid fault was not included in [3]. Wang [14] independently
proposed a routing-sensitive convex region where each con-
vex region has two versions (shapes), one for west-east rout-
ing and the other for east-west routing.

2.2 Fault-tolerant and deadlock-free routing

We first show the application of orthogonal convex poly-
gon in achieving fault-tolerant and deadlock-free routing in
2-D meshes. It is assumed that faults in a given 2-D mesh
are contained in a set of disjoint faulty polygons. Chalasani
and Boppana’s extended e-cube routing [3] is used to illus-
trate the routing process. The e-cube routing (also called

WE−bound EW−bound

SN−boundNS−bound

Figure 1. Routing of messages around dis-
abled regions.

x-y routing) sends a message in a row (x-direction) until
the message reaches a node that is in the same column as
its destination and, then, sends the message in the column
(y-direction). Consider a routing process from node (1,3) to
node (6,4), the message is first routed along the row to node
(6,3) and, then, the message follows the column to reach
destination (6,4). The extended e-cube routing follows the
base e-cube routing until it hits a faulty polygon, and then,
sends the message around the region (and the message is in
an “abnormal” mode), clockwise or counterclockwise based
on a set of rules (to be discussed shortly), until it becomes
“normal” again, i.e., the region no longer has effect on the
routing process.

Messages are classified into one of four types: EW (East-
to-West), WE, NS, or SN. A message is initially labelled
as EW-bound or WE-bound, depending on its direction of
travel along the row. Once a message completes its row
hops, it becomes a NS-bound or SN-bound message. For
the routing example from node (1,3) to node (6,4), the mes-
sage is WE-bound initially. The message becomes SN-
bound once it reaches node (6,3). Once a message hits a
faulty polygon, it has to route around the region. Figure 1
shows ways to route around a faulty polygon for different
types of messages. The orientation (clockwise or counter-
clockwise) is a don’t care for an NS- or SN-bound message.
The orientation for a WE-bound (EW-bound) message is the
following: clockwise (counterclockwise) if the message is
in a row above its row of travel; counterclockwise (clock-
wise) if the message is in a row below its row of travel, and
don’t care (don’t care) if the message is in the same row of

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



(2,3)(1,3)

(5,2) (6,2)

(6,4)

Figure 2. A routing example from source (1,3)
to destination (6,4).

travel.
Consider again the routing process from (1,3) to (6,4).

The message is routed along the row towards east and it is
WE-bound. Suppose there is a faulty polygon f(2,4), (3,4),
(4,3)g (see Figure 2). Once it reaches the boundary of the
faulty polygon at node (2,3), the message is routed along the
faulty polygon. Since node (2,3) is in a row that is below
the row of travel (or the row of the destination), the mes-
sage is routed around the faulty polygon counterclockwise
as shown in Figure 2. Once the message reaches node (5,2)
it becomes “normal” again. The rest of the routing process
follows the base e-cube routing along the row to node (6,2),
and then, along the column to reach node (6,4).

To ensure freedom from deadlock and livelock, four vir-
tual channels, vc0, vc1, vc2, vc3, are used for channels
around faulty polygons. Note that more virtual channels
are needed if the region is concave. The use of these virtual
channels is as follows: EW-bound messages use vc0 for all
hops around faulty polygons, WE-bound messages use vc1,
NS-bound messages uses vc2, and SN-bound messages use
vc3. Other details related to the extended e-cube routing
can be found in [3].

2.3 Distributed formation of sub-minimum faulty
polygon

Wu’s sub-minimum faulty polygon construction [15] is
based on two labelling schemes:

� Labelling scheme 1: All faulty nodes are unsafe, and
all non-faulty nodes are safe initially. A non-faulty
node is changed to unsafe if it has a faulty or unsafe
neighbor in both dimensions; otherwise, it remains
safe.

� Labelling scheme 2: All faulty nodes are marked dis-
abled. All safe nodes are marked enabled. An unsafe

(b)(a)

(c)

Figure 3. (a) Rectangular faulty blocks, (b)
sub-minimum faulty polygon, and (c) mini-
mum faulty polygon.

node is initially marked disabled, but it is changed to
enabled if it has two or more enabled neighbors.

Based on the above labelling schemes, a faulty node
must be unsafe and disabled. For a non-faulty node, there
are three possible cases: (1) safe and enabled, (2) unsafe
and enabled, and (3) unsafe and disabled. The labelling
scheme 1 corresponds to a growing phase that includes non-
faulty nodes in the block and, as a result, rectangular faulty
blocks are generated. The labelling scheme 2 corresponds
to a shrinking phase that removes non-faulty nodes from
rectangular faulty blocks.

Figure 3 (a) shows rectangular faulty blocks generated
from ten faulty nodes (black nodes). Gray nodes are unsafe
nodes. Other safe non-faulty nodes are not shown. Fig-
ure 3 (b) shows two orthogonal convex polygons generated
from Figure 3 (a). Gray nodes are unsafe and disabled nodes
(i.e., non-faulty nodes contained in the polygon), and white
nodes are unsafe but enabled nodes (i.e., non-faulty nodes
that are originally in rectangular faulty block, but are re-
moved from the orthogonal convex polygon). Clearly, the
right polygon in Figure 3 (b) is not minimum and it can be
further partitioned into three polygons as shown in Figure 3
(c).

Wu [15] shows that under the condition that each poly-
gon cannot be further partitioned (such as the left polygon in
Figure 3 (b)), the polygon is minimum. That is, the polygon
contains the minimum number of non-faulty nodes unless

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



the original faulty block can be further partitioned.

3 Minimum Orthogonal Convex Polygon

We start with a centralized solution for determining min-
imum faulty polygons, followed by a distributed solution.
Both solutions consist of two phases. First, faulty nodes
are grouped into a set of components, where faulty nodes
in each component are adjacent. Then, a minimum number
of non-faulty nodes are included to make each component a
polygon.

3.1 Centralized solutions

In the centralized solution, first we define the notion of
node adjacency.

Definition 2: For a given node (x; y), the adjacent nodes of
(x; y) are (x�1; y�1), (x�1; y), (x�1; y+1), (x; y�1),
(x; y + 1), (x+ 1; y � 1), (x+ 1; y), and (x+ 1; y + 1).

In phase 1, a merge process is used that groups faulty
nodes into components, where each component consists of
adjacent faulty nodes only. Clearly, a sub-minimum faulty
polygon may include multiple components. In addition,
for each component, four coordinates minx, miny, maxx,
and maxy, representing the minimum and maximum coor-
dinates of any nodes in this component along X and Y di-
mensions, are maintained in merge process.

In phase 2, there are two possible solutions. One is based
on applying labelling schemes 1 and 2 on each component.
The other is based on the definition of orthogonal convex
polygon to “fill in” each concave region of a component
with non-faulty nodes.

In the first solution of phase 2, for each component,
a virtual faulty block is constructed by applying the la-
belling scheme 1. In the virtual faulty block, four corners
are (minx;miny), (minx;maxy), (maxx;miny), and
(maxx;maxy). Such a rectangle can be simply represented
by two opposite corners [(minx;miny); (maxx;maxy)].
Applying labelling scheme 2, minimum faulty polygons are
derived, one for each virtual faulty block.

Minimum Orthogonal Convex Polygons (Centralized So-
lution based on Labelling Schemes 1 and 2)

1. Construct components using the merge process. Each
component C maintains minimum and maximum coordi-
nates along X and Y dimensions: minx(C), miny(C),
maxx(C), and maxy(C).

2. Apply labelling scheme 1 to each component C to gen-
erate a virtual faulty block. Basically, all nodes inside
the boundary of X : [minx(C);maxy(C)] and Y :
[miny(C);maxy(C)] other than those of C are treated as
non-faulty nodes, and then become unsafe after the labelling
process.

(a) (b)(a) (b)

(c) (d)(c) (d)

virtual faulty
block

Figure 4. Centralized solution: (a) compo-
nents, (b) and (c) faulty polygons, and (d) “pil-
ing" all faulty polygons.

3. Apply labelling scheme 2 to enable some non-faulty but un-
safe nodes in the virtual faulty block.

4. Use the superseding rule to resolve conflicting node status
for final status of each non-faulty node.

Theorem: Each polygon P derived based on the proposed
process is a minimum faulty polygon. Figure 4 shows an
example of two components and the corresponding virtual
faulty blocks. In Figure 4 (a), white nodes are unsafe but
enabled nodes in the sub-minimum faulty polygon. In Fig-
ure 4 (b) and (c), white nodes are unsafe but enabled nodes
in the virtual faulty block, but removed from the minimum
faulty polygon. Gray nodes are unsafe and disabled nodes.
Virtual faulty blocks (Figures 4 (b) and (c)) are encircled by
rectangles with dashed lines and minimum faulty polygons
are represented by rectangles with thick lines. The final di-
agram (Figure 4 (d)) is constructed by “piling” all the dia-
grams on top of each other, with the following superseding
rule for node status:

� Superseding rule: black nodes overwrite gray and
white nodes, and gray nodes overwrite white nodes.

Note that using the sub-minimum faulty polygon con-
struction, two components in Figure 4 will be placed in one
faulty block after the labelling scheme 1. Also, the white
node on the north-west corner will be enabled. The resultant

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



polygon (shown in Figure 4 (a)) still includes two compo-
nents plus one gray node and three white nodes in Figure 4
(d) and it is not minimum.

Proof: We need only to prove that there exists no set of
disjoint convex polygons that covers all the faulty nodes in
polygon P , and that in addition, the number of non-faulty
nodes included in these polygons is less than that of P .

Suppose P is constructed out of k components
C1; C2; :::; Ck, and the corresponding polygons are
P1; P2; :::; Pk. Based on the definition of component, each
Pi (1 � i � k) cannot be partitioned. Let P

0

1
; P

0

2
; :::; P

0

m be
any set of disjoint faulty polygons that covers all faults in P .
Then for each Pi, there is a P

0

j (1 � j � m) that covers all
faults in Pi. Based on the proof of Theorem 2 in [15], Pi is
derived from labelling schemes 1 and 2 on Ci, and it cannot
be further partitioned, then P

0

j includes also all non-faulty
nodes in Pi. Therefore, P : P1, P2, ... Pi contains no more
non-faulty nodes than those of P

0

1, P
0

2, ... P
0

m.

The first solution is based on emulating labelling scheme
1 (growing each component into a virtual faulty block) and
labelling scheme 2 (shrinking each virtual faulty block into
a minimum faulty polygon). In the second solution, non-
faulty nodes are directly added to the concave region of a
component to convert it to a convex polygon. The correct-
ness of this approach is clear since it is equivalent to the
labelling schemes 1 and 2 applied on each component. We
first define the notion of concave row section and concave
column section.

Definition 3: Given a component, for a horizontal (vertical
line) where two end nodes on the line are inside the compo-
nent, each section of the line that is outside the component
is called a concave row (column) section.

To find minimum faulty polygons, we only need to dis-
able all nodes on the concave row (column) section. To
identify all concave row (column) sections, we need to
“scan” each component twice, horizontal (from minx to
maxx) and vertical (from miny to maxy). Each non-faulty
node is enabled by default, the final status of each non-
faulty node is decided based on the same superseding rule
discussed in the last subsection.

Minimum Orthogonal Convex Polygons (Centralized So-
lution based on Concave Row and Column Sections)

1. Construct components using the merge process. Each
component C maintains minimum and maximum coordi-
nates along X and Y dimensions: minx(C), miny(C),
maxx(C), and maxy(C).

2. Identify all concave row and column sections by scan-
ning each component twice, one horizontally from minx to
maxx and one vertically from miny to maxy.

3. Assign disable status to all nodes in concave row and column
sections.

concave
column
section

initiator

section
concave row

boundary ring

initiator

column i

b1

b2

b3

b4

(a) (c)(b)

Figure 5. Distributed solution for (a) and (b)
open concave region, and for (c) closed con-
cave region.

4. Use the superseding rule to resolve conflicting node status
for final status of each node.

3.2 Distributed solutions

The distributed solution is more involved. The first chal-
lenge is the construction of a component. This is done by
boundary nodes of a component, i.e., nodes outside any
faulty components but adjacent to this component. If a
boundary node is at the north-side of a component, it is
called a north boundary node with respect to the compo-
nent. Other adjacent nodes towards south, east, and west
are defined in a similar way. Note that each node may have
multiple boundary status (e.g., a node can be a south and
north boundary node if it is at the south and north of the
component). Boundary nodes form a “ring” surrounding
the faulty component. A boundary node is the south-west
outer corner (see the triangle node in Figure 5 (a)) if it has
a west boundnary neighbor and a south boundary neighbor.
A boundary node is the south-west inner corner (see the
triagnle node in Figure 5 (b)) if it is an east and a north
boundary node at the same time. Note that south-west outer
corner belongs to the boundary ring, but it is not an east,
south, west, or north boundary node. Once the boundary
ring is constructed, it is assumed that each node knows the
next boundary node (along the clockwise direction).

We assume that both the west-most south-west outer cor-
ner and the west-most south-west inner corner (if any) initi-
ate the ring construction process and these corners are also
called the initiators. The initiation message goes around
the faulty component in a clockwise direction (see Figure 5,
where an initiator is represented by a triangle). The situa-
tion for multiple initiations will be discussed later.

The next challenge is the distributed method of deter-
mining the status of each non-faulty node. Since a concave

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



row/column section may overlap with another faulty com-
ponent (as will be seen later with an example), the central-
ized approach based on labelling schemes 1 and 2 cannot be
directly applied. A disabled node in a concave row/column
section of one faulty component can be a faulty node in
another faulty component. Therefore, such a node cannot
participate in neighbor information exchange as required in
labelling schemes 1 and 2. Instead of involving all nodes in
the concave row and column section, we use only boundary
nodes that are end nodes of concave row/column sections,
since a boundary node cannot be a faulty node in any faulty
component. Each concave row/column section is defined
during the boundary ring construction. The following infor-
mation needs to be piggybacked with the initiation message:

� Initiator ID (x; y)

� Boundary 2-D array V [1::n](E; S;W;N)

Initiator ID is used as the message id, and it is also used
to determine when the message should terminate (i.e., when
a node receives a message with its own id). Boundary ar-
ray (n� 4 2-D array) is used to determine concave row and
column sections, where E; S;W;N are used to store east,
south, west, and north boundary node information. This ar-
ray includes row number for the most recently visited north
and south boundary node at each column and column num-
ber for the most recently visited east and west boundary
node at each row. Basically, in a given n�n 2-D mesh, one
entry is used for south (north) boundary nodes on each row
(from row 1 to row n) and one entry is used for east (north)
boundary nodes on each column (from column 1 to column
n). Initially, all entries in the boundary array are initialized
to “-” (undefined). It should be stressed that during the ring
formation, multiple boundary nodes of the same type (east,
south, west, or north) may appear. There is only one entry
for each type per row (column). During the ring forma-
tion of the example in Figure 5 (b), there are four boundary
nodes, b1 (north), b2 (south), b3 (north), and b4 (south), in
column i. V [i](S) stores the row number of b1 and later the
row number of b3. Similarly, V [i](N) stores the row num-
ber of b2 which is later substituted by the row number of
b4.

In the following algorithm, one end node of each con-
cave row (column) section is selected to be in charge of no-
tification of disable status to all nodes in the corresponding
section (see gray nodes in Figure 6). Such an end node is
also called notification end node which is responsible for
notification and maintains the positions of two end nodes of
the corresponding concave section.

Concave Row and Column Section (Distributed Solution)

1. Upon receiving the initiation message, the current node does
the following if it is an east, south, west, or north boundary
node:

(b)(a)

west boundary

north boundary
(d)(c)

south boundary

east bounary 

Figure 6. Four different cases of concave sec-
tions: (a) and (c) concave row section, and (b)
and (d) concave column section.

(a) Update V [1::n](E; S;W;N) at the corresponding entry
based on the type of boundary node and the current node po-
sition. In case of multiple boundary status, multiple entries
are updated.

(b) The current node is a notification end node for concave
row or column section

� if the current node is an east (west) boundary and the
west (east) boundary of the same row has a record with
no smaller (no larger) a column number (see Figures 6
(a) and (c)), or

� if the current node is a south (north) boundary and
the north (south) boundary of the same column has a
record with no smaller (no larger) a row number (see
Figures 6 (b) and (d)).

(c) If the current node is a notification end node, it records the
positions (stored in V ) of two end nodes of the corresponding
concave row (column) section.

2. Pass on the initiation message to the next node in the bound-
ary ring with the updated boundary array.

In the example of Figure 5 (b), the initiation message vis-
its node b1 first and stores its row information in V [i](N)
(which is initiated to “-”) . When b2 is visited, its row infor-
mation is stored in V [i](S) (which is also initiated to “-”).
Since the row number of b2 is smaller than the row num-
ber of b1 (i.e., V [i](S) < V [i](N)), no action is needed.
When b3 is visited, its row information is stored in V [i](N)
(i.e., the row number of b1 is replaced). Again, no action is
needed since V [i](S) < V [i](N). Finally, when b4 is vis-
ited, its row information is stored in V [i](S). Since the row

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



(b)

component 1

component 2

component 3

(a)

component 1

component 2

component 3

Figure 7. Notification in a concave column
section with blocking polygons.

number of b4 is no smaller than the row number of b3 (i.e.,
V [i](S) � V [i](N)), b4 is the notification end node for a
concave section in column i. The row positions of two end
nodes are recorded in V [i](S) and V [i](N).

Various optimizations are possible on reducing mem-
ory space by combining V [i](S) with V [i](N) and V [i](E)
with V [i](W ), and removing redundant portions in differ-
ent concave sections by also holding the second most re-
cently visited boundary node information. Details are more
involved and are skipped here.

One more challenge is that a concave region (consists
of concave row and/or column) may actually contain faults
(it is fault-free only with respect to the current component)
and the corresponding faulty polygons are called blocking
polygons. In the absence of blocking polygons, forwarding
status along the concave row (column) section is straight-
forward along a row (column); otherwise, the message that
carries node status must route around blocking polygons.
Figure 7 (a) shows an example where a concave column sec-
tion in a concave region (component 1) has to bypass two
blocking polygons, components 2 and 3. Note that, when
routing around blocking polygons, node status for portions
(of the section) that also belong to concave regions of block-
ing polygons (such as that of component 3 in Figure 7 (a))
is determined multiple times (i.e., colored twice in Figure 7
(a), one by component 1 and one by component 3). The end
result of concave region is shown in Figure 7 (b).

In a component, there are many south-west corners (in-
ner or outer). It is possible that many or all of them can initi-
ate the process. Therefore, the procedure starts whenever a
new south-west corner is formed and we have the following
overwriting rule in the priority order of (a) and (b): When a
node receives more than one initiation message, (a) the one
with a smaller x value in initiator ID overwrites the rest and,
then, (b) the one with a smaller y value in initiator ID over-
writes the rest. A south-west corner is “awakened” by an
incoming initiation message if it has not started its process
and its ID overwrites that of the incoming message. In this
way, the west-most south-west (inner or outer) corner will

initiator (0,0)

(5,6)

0 1 2

0
1

2

3

4

6

5

3 4 5

Figure 8. An example.

dominate even if it is not the initiator originally.
Figure 8 shows an example of one component with ten

faulty nodes (black nodes). Gray nodes in the figure corre-
spond to notification end nodes of concave row/column sec-
tions. The remaining disabled nodes are not shown. Based
on the distributed solution, node (1, 2) is a south bound-
ary node responsible for concave column section [1, 2..2] (a
column section with one row). In fact, node (1, 2) has three
statuses: north, west, and south boundary node; this node
updates three entries in the boundary array with the same
timestamp. Node (2, 3) is a north boundary node for col-
umn section [2, 3..4]. Node (2,3) is also an east boundary
node. Nodes (3, 3), (3, 4), and (3, 5) are all west boundary
nodes for concave row sections [2..3, 3], [2..3, 4], and [3..3,
5], respectively.

4 Simulation

A simulation has been conducted in a 100�100 mesh to
test the effectiveness of the new faulty polygon model. To
simplify the simulation, we assume that the number of faults
is no more than 800. After the occurrence of faults, faulty
blocks, sub-minimum faulty polygons, and minimum faulty
polygons (in both centralized and distributed solutions) are
constructed through rounds of information exchanges and
updates between neighbors. We consider two fault distri-
butions, assuming all faults are sequentially added to the
network: First, we randomly generate the positions of these
faults in the random fault distribution model. Second, to test
cases with large faulty components, a clustered fault distri-
bution model is adopted here. In this model, all points have
the same failure rate initially. After a fault (x, y) is inserted,
the failure rate of its adjacent neighbors (eight in all) is dou-
bled. Therefore, there are two different failure rates, one for
nodes that are not adjacent neighbors of existing faults and
the other for nodes that are adjacent neighbors of existing
faults. Under the clustered fault distribution model, faults
tend to form clusters.

Figure 9 shows the average number of non-faulty nodes
contained in faulty blocks (FB), sub-minimum faulty poly-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800

# 
of

 d
is

ab
el

d 
no

de
s 

(l
og

10
)

Number of faulty nodes

FB
FP

MFP

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800

# 
of

 d
is

ab
el

d 
no

de
s 

(l
og

10
)

Number of faulty nodes

FB
FP

MFP

Figure 9. Average number of non-faulty but
disabled nodes contained in faulty blocks
(FB), sub-minimum faulty polygons (FP) and
minimum faulty polygons (MFP) in the whole
network: (a) the random fault distribution
model and (b) under the clustered fault dis-
tribution model.

gons (FP), and minimum faulty polygons (MFP) in the
whole network. The results under the random fault distri-
bution model are shown in Figure 9 (a) and those under the
clustered fault distribution model are shown in Figure 9 (b).
The faulty polygon (sub-minimum faulty polygon or mini-
mum faulty polygon) covers all the faults in the faulty block
but contains fewer non-faulty nodes than does the faulty
block. Under the sub-minimum faulty polygon model, 50%
of non-faulty nodes contained in the faulty blocks can be
enabled. Under the minimum faulty polygon model, 90%
of non-faulty nodes contained in the faulty blocks can be
enabled.

Figure 10 shows the average size of FB, FP, and MFP by
the number of faulty and non-faulty nodes they contain. The
results under the random fault distribution model are shown
in Figure 10 (a) and those under the clustered fault distri-
bution model are shown in Figure 10 (b). The average size
of both sub-minimum faulty polygon and minimum faulty
polygon is smaller than that of faulty block. The average
size of MFP is the least of the three (FB, FP, and MFP).
Because of the scattered distribution of faults under the ran-
dom fault distribution model, most faulty blocks contain no
more than four nodes and most virtual faulty blocks contain
only one faulty node. Under the clustered fault distribution
model, the size of each faulty block becomes large and the
average size can be six times that of the random faulty distri-
bution model. However, the average size of minimum faulty
polygons does not increase much, even when the number of
faults reaches 800.

Figure 11 shows the average number of rounds for status
determination in the whole network under FB, FP, and MFP
(the centralized solution CMFP and the distributed solution
DMFP). More specifically, under the faulty block model
(FB), rounds of information exchanges between neighbors
are needed for applying the labelling scheme 1. Under the
sub-minimum faulty polygon model (FP), extra rounds are

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800

Si
ze

 o
f 

fa
ul

t b
lo

ck
/p

ol
yg

on

Number of faulty nodes

FB
FP

MFP

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

Si
ze

 o
f 

fa
ul

t b
lo

ck
/p

ol
yg

on

Number of faulty nodes

FB
FP

MFP

Figure 10. Average size of FB, FP, and MFP:
(a) the random fault distribution model and (b)
under the clustered fault distribution model.

needed for applying labelling scheme 2. In the centralized
solution under the minimum faulty polygon model (CMFP),
we “emulate” labelling schemes 1 and 2 on faulty compo-
nents, where a virtual faulty block is generated from each
component. Rounds of information exchanges are needed
when labelling schemes 1 and 2 are applied on each faulty
component. In the distributed solution under the minimum
faulty polygon model (DMFP), we use the boundary ring
construction followed by notification from one end node in
each concave row/column section. Rounds of information
propagation are needed in boundary ring construction and
the notification process. That is, the number of rounds for
status determination under FB or FP depends on the maxi-
mum size of faulty blocks and under MFP depends on the
maximum size of faulty components.

Simulation results in Figure 11 show that the number
of rounds for status determination under FP is more than
that of FB due to the extra rounds for applying labelling
scheme 2. Because in the presence of a large number of
faulty nodes, the average size of faulty blocks is signifi-
cantly larger than that of components, the the number of
rounds needed under the CMFP is much less than that of
FB. Under MFP, the construction in the distributed solution
needs more rounds than that of the centralized solution, be-
cause the boundary ring construction needs to circle around
each faulty component and to notify nodes in the concave
region. However, the number in the distributed solution un-
der the MFP is still much less than that of FP. This result
confirms the effectiveness of our minimum faulty polygon
model.

5 Conclusion

In this paper, we provided a solution to an open prob-
lem posed in [15]. That is, given a set of faulty nodes,
find a set of disjoint orthogonal polygons to cover these
faulty nodes such that the number of non-faulty nodes in
these orthogonal polygons is minimized. We proposed a
centralized solution and its distributed counterpart. Sim-
ulation has been conducted to compare the proposed fault

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 #
 o

f 
ro

un
ds

Number of faulty nodes

FB
FP

CMFP
DMFP

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 #
 o

f 
ro

un
ds

Number of faulty nodes

FB
FP

CMFP
DMFP

Figure 11. Average number of rounds for sta-
tus determination under FB, FP, and MFP (the
centralized solution CMFP and the distributed
solution DMFP): (a) under the random fault
distribution model and (b) under the clustered
fault distribution model.

model with previous ones, including the rectangular faulty
block and sub-optimal orthogonal convex polygon, in terms
of the average size of the block and the average number of
non-faulty nodes included in the block. Results have shown
that the proposed approach can not only find a set of min-
imum faulty polygons but also does so quickly in terms of
the number of rounds of information exchanges and updates
between neighbors in the distributed solution. Our future
work will focus on extending the proposed method to higher
dimension meshes (tori).

6 Acknowledgments

This work was supported in part by NSF grants
CCR 9900646, CCR 0329741, ANI 0073736, and EIA
0130806.

References

[1] A. Agarwal. Limits on interconnection network perfor-
mance. IEEE Transactions on Parallel and Distributed Sys-
tems. 2, (4), October 1991, 398-412.

[2] Y. M. Boura and C. R. Das. Fault-tolerant routing in mesh
networks. Proc. of 1995 International Conference on Paral-
lel Processing. August 1995, I 106- I 109.

[3] S. Chalasani and R. V. Boppana. Communication in mul-
ticomputers with nonconvex faults. IEEE Transactions on
Computers. 46, (5), May 1997, 616-622.

[4] A. A. Chien and J. H. Kim. Planar-adaptive routing: Low-
cost adaptive networks for multiprocessors. Journal of ACM.
42, (1), January 1995, 91-123.

[5] W. J. Dally. Performance analysis of k-ary n-cube intercon-
nection networks. IEEE Transactions on Computers. 39, (6),
June 1990, 775-785.

[6] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Net-
works: An Engineering Approach. IEEE Computer Society.
1997.

[7] R. Libeskind-Hadas and E. Brandt. Origin-based fault-
tolerant routing in the mesh. Proc. of the 1st International
Symposium on High Performance Computer Architecture.
January 1995, 102-111.

[8] F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

[9] J. D. Shih. Adaptive fault-tolerant wormhole routing algo-
rithms for hypercube and mesh interconnection networks.
Proc. of the 11th International Parallel Processing Sympo-
sium. April 1997, 333-340.

[10] C. C. Su and K. G. Shin. Adpative fault-tolerant deadlock-
free routing in meshes and hypercubes. IEEE Transactions
on Computers. 45, (6), June 1996, 672-683.

[11] Y. J. Suh, B. V. Dao, J. Duato, and S. Yalamanchili. Software
based fault-tolerant oblivious routing in pipelined networks.
Proc. of the 1995 International Conference on Parallel Pro-
cessing. August 1995, I 101 - I 105.

[12] P. H. Sui and S. D. Wang. An improved algorithm for fault-
tolerant wormhole routing in meshes. IEEE Transactions on
Computers. 46, (9), September 1997, 1040-1042.

[13] Y. C. Tseng, M. H. Yang, and T. Y. Juang. An Euler-path-
based multicasting model for wormhole-routed networks
with multi-destination capability. Proc. of the 1998 Inter-
national Conference on Parallel Processing. August 1998,
366-373.

[14] D. Wang. Minimal-connected-component (MCC) – a refined
fault block model for fault-tolerant minimal routing in mesh.
Proc. of IASTED Int’l Conf. Parallel and Distributed Com-
puting and Systems. Nov. 1999, 95-100.

[15] J. Wu. A distributed formulation of smallest faulty orthogo-
nal convex polygons in 2-d meshes. Proc. of International
Parallel and Distributed Processing Symposium (IPDPS).
2001, (CD-ROM).

[16] J. Wu. Fault-tolerant adaptive and minimal routing in
mesh-connected multicomputers using extended safety lev-
els. IEEE Trans. on Parallel and Distributed Systems. 11,
(2), Feb. 2000, 149-159.

[17] J. Wu. A fault-tolerant and deadlock-free routing protocol in
2-d meshes based on odd-even turn model. IEEE Transac-
tions on Computers. 52, (9), Sept. 2003, 1154-1169.

[18] D. Xiang. Fault-tolerant routing in hpercube multicomputers
using local safety information. IEEE Transactions on Paral-
lel and Distributed Systems. Vol. 12, No. 9, 2001, 942-951.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE


	West Chester University
	Digital Commons @ West Chester University
	2004

	On Constructing the Minimum Orthogonal Convex Polygon in 2-D Faulty Meshes
	Jie Wu
	Zhen Jiang
	Recommended Citation



