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Abstract

In this paper, a fault-tolerant routing in n-D meshes with
dynamic faults is provided. It is based on an early work on
fault-tolerant routing in dynamic 2-D meshes [9] and 3-D
meshes [10] where faults occur during a routing process.
Unlike many traditional models that assume all the nodes
know global fault information, our approach is based on
the concept of limited global fault information. First, a fault
model called faulty block is used in which all faulty nodes
in the system are contained in a set of disjoint faulty blocks.
Then, the information of faulty block needs to be distributed
to a limited number of nodes at the boundaries of faulty
block to avoid a message entering a detour area. When new
faults occur, faulty blocks need to be reconstructed and their
fault information needs to be redistributed. In this case, the
update of fault information and the routing process proceed
hand-in-hand. During the converging period, the routing
process may experience more detours with inconsistent in-
formation. We study the limited distribution of fault infor-
mation in n-D meshes with dynamic faults. Our study shows
that fault information can be distributed quickly to help the
routing process. Therefore, the performance of routing pro-
cess degrades gracefully in such a dynamic system.

1 Introduction

In a multicomputer system, a collection of processors
(also called nodes) works together to solve large application
problems. These nodes communicate and coordinate their
efforts by sending and receiving messages through the un-
derlying communication network. Thus, the performance
of such a multicomputer system is dependent on the end-
to-end cost of communication mechanisms. Routing is the
process of finding a path from the source node to the desti-
nation node in a given system. Routing time of messages is

one of the key factors that are critical to the performance of
multicomputers.

The mesh-connected topology is one of the most thor-
oughly investigated network topologies for multicomput-
ers due to structural regularity for easy construction and
high potential of legibility of various algorithms [5, 7, 8].
As the number of nodes in a mesh-connected multicom-
puter increases, the chance of failure also increases. The
complex nature of networks also makes them vulnerable
to disturbances which can be either deliberate or acciden-
tal. Therefore, the ability to tolerate failure is becoming in-
creasingly important, especially in the communication sub-
system. Several studies have been conducted which achieve
fault tolerance by adding extra components to the system
[4, 13]. However, adding nodes and/or links requires modi-
fication of network topologies which may be very expensive
and difficult. We focus here on achieving fault tolerance us-
ing the inherent redundancy present in the mesh-connected
multicomputer, without adding any spare node or link.

Recently, a switching technique for routing, known
as pipelined circuit switching (PCS), was developed by
Gaughan and Yalamanichili [6]. Unlike wormhole rout-
ing, PCS allows backtracking during the path setup phase.
Backtracking is a key element in providing fault tolerance
in a system with dynamic faults. However, without fault
information, the routing process may enter a region where
all minimal paths to the destination are blocked by faulty
nodes. Thus, PCS routing needs either detour or backtrack-
ing and causes routing difficulty which will increase routing
delay and cause traffic congestion. The routing process here
refers to the path setup phase. In PCS, the actual message
sending occurs after a routing path is set up. Dynamic faults
refer to ones that appear in the set-up phase only.

A routing in 2-D meshes based on faulty block informa-
tion, which is a special form of limited distribution of fault
information, is presented in [9]. First, all faulty nodes are
contained in disjointed faulty blocks by applying a label-
ing process. Routing is based on faulty block information



distributed at the nodes along the boundary lines of faulty
blocks to avoid routing difficulties. When dynamic faults
occur, faulty blocks need to be reconstructed and their fault
information needs to be redistributed. In this case, the up-
date of fault information and the routing process proceed
hand-in-hand. During the converging period, the routing
process may experience more detours with unstable infor-
mation (also called inconsistent information). Results in [9]
show that our fault information can be distributed quickly.
In addition, the performance of routing process degrades
gracefully in such a dynamic system. Compared with other
fault information such as a routing table associated with
each node, the update of faulty block information converges
quickly and it also reduces oscillation update caused by in-
consistent information. Moreover, our approach reduces the
memory requirement to store fault information in the whole
network. When a disturbance occurs, only those affected
nodes need to update fault information. In [10], our results
in 2-D meshes are extended to 3-D meshes.

Most routing techniques are not suitable for networks
with dynamic faults. In addition, a good analytical model
is lacking while we resort mostly to simulations. This pa-
per is our first attempt to study the effect of dynamic faults
on routing in n-D meshes (n = 2, 3, ...). First, a set of
disjoint n-dimensional faulty blocks is used to contain all
faulty nodes in an n-D mesh. The fault information will be
propagated along the boundaries of a faulty block in our col-
lection and distribution process to avoid routing difficulties.
Our information model exhibits desirable properties of self-
stabilizing, self-optimizing, and self-healing. For a given
source and destination pair in n-D meshes with dynamic
faults, our fault-information-based PCS routing keeps cer-
tain levels of fault tolerance and adaptivity.

2 Preliminaries

2.1 k-ary n-dimensional meshes

A k-ary n-dimensional (n-D) mesh with N=kn nodes
has an interior node degree of 2n and the network diameter
is (k − 1)n. Each node u has an address (u1, u2, ..., un),
where 0 ≤ ui ≤ k − 1. Two nodes (v1, v2, ..., vn) and
(u1, u2, ..., un) are connected if their addresses differ in
one and only one dimension, say dimension i; moreover,
|vi − ui| = 1. Basically, nodes along each dimension are
connected as a linear array. Each node u in an n-D mesh is
labeled as (u1, u2, ..., un). The distance between two nodes
u and v (D(u, v)) is equal to | u1−v1 | + | u2−v2 | +...+ |
un − vn |. Assume node u is the current node, d is the des-
tination node, and v is a neighbor of node u. v is called
a preferred neighbor if D(v, d) < D(u, d); otherwise, it
is called a spare neighbor. Respectively, the correspond-
ing connecting directions are called preferred direction and
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Figure 1. (a) Faulty block (Definition 1) and (b)
its adjacent surfaces in a 3-D mesh.
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Figure 2. Definition of a 3-level corner

spare direction.

2.2 Faulty block and its related information

Most literature on fault-tolerant routing uses disjoint
rectangular blocks [1, 2, 3, 11, 12] to model node faults (link
faults can be treated as node faults) and to facilitate routing
in mesh networks. In [14], Wu presents a model that acti-
vates most non-faulty nodes from a faulty block and uses
the least number of steps to build a faulty block in an n-D
mesh:
Definition 1: In an n-D mesh, a non-faulty node is either
marked enabled or disabled. Initially, all nonfaulty nodes
are marked enabled. A nonfaulty node is marked disabled
if there are two or more disabled or faulty neighbors along
different dimensions. Connected disabled and faulty nodes
form a faulty block, simply called as block.

Respectively, we define the adjacent nodes and corners
of an n-D block as:
Definition 2: In an n-D mesh, an adjacent node is an en-
abled node with a neighbor in the block. A 2-level corner is
an enabled node with two adjacent nodes of the same block
in different dimensions. Recursively, an n-level edge node is
an (n− 1)-level corner and an n-level corner is an enabled
node with n n-level edge neighbors of the same block.

As a result, a set of cube-type blocks is formed. For ex-
ample (Figure 1 (a)), by four faults (3,5,4), (4,5,4), (5,5,3),
and (3,6,3) in a 3-D mesh, the corresponding block con-
tains nodes which form a block [3:5, 5:6, 3:4]. Figure 2
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Figure 3. Boundaries of a block in 3-D
meshes. (a) Boundary for S4 starts from the
edges of S2. (b) Boundary of a block on the
view of one edge. (c) Boundary of a block on
the view of one corner. (d) Boundary of block
A intersecting with block B.

shows the definition of a 3-level corner of block [3:5, 5:6,
3:4]: (6, 4, 5). It has three 3-level edge neighbors: (5, 4, 5),
(6, 5, 5) and (6, 4, 4). Each 3-level edge node is a 2-level
corner and has two neighbors adjacent to the block. For
example, (5, 4, 5) has neighbors (5, 5, 5) and (5, 4, 4) ad-
jacent to the block. In 3-D meshes, [xmin + 1 : xmax −
1, ymin + 1 : ymax − 1, zmin + 1 : zmax − 1] represents a
block with eight corners: (xmin, ymin, zmin), (xmax, ymin,
zmin), (xmax, ymax, zmin), (xmin, ymax, zmin), (xmin,
ymin, zmax), (xmax, ymin, zmax), (xmax, ymax, zmax), and
(xmin, ymax, zmax).

In [10], we have the following definition of the six sur-
faces of a block in 3-D meshes that are adjacent to the six
surfaces of a block.

Definition 3: The six adjacent surfaces of a block in 3-D
meshes are defined as one unit distance away from the sur-
face of the block in each direction. Surfaces S0 and S3 are
parallel to plane X = 0 with S0 on the west side of S3;
surfaces S1 and S4 are parallel to plane Y = 0 with S1

on the south side of S4; surfaces S2 and S5 are parallel to
plane Z = 0 with S2 on the back side of S5. The line con-
necting two adjacent surfaces is called an edge of the block.
There are 12 different edges for a block. The node connect-
ing three edges of the block is called a corner, and there are
8 corners for a block (see in Figure 1 (b)).

For any two opposite adjacent surfaces, S1 and S4 in Fig-
ure 1 (b), if the routing message enters the area right below
S1 and its destination is right over S4, there is no mini-
mal path because the block disconnects all shortest paths
between the current node and the destination. The boundary
surface, simply boundary, is used to enclose such a danger-
ous area. With the block information at each node on this
boundary, the routing decision will avoid selecting a pre-

ferred direction that leads the routing message to enter the
dangerous area. That preferred direction is called preferred
but detour direction, and such a routing is called critical
routing. Otherwise, the selection of any preferred direction
in the routing decision will not affect the minimal routing,
and the routing is called non-critical routing respectively.

As shown in Figure 3 (a), the boundary for S4 starts from
the edges of S1 (except for the corner). The block infor-
mation will propagate along this boundary in the negative
Y direction. Without any other blocks, the propagation of
boundary information is forwarded node by node in one di-
mension until it meets the outmost surface of the meshes.
Figure 3 (b) shows boundaries of a block on the view of one
edge, and Figure 3 (c) shows boundaries of a block on the
view of a corner in 3-D meshes.

If, starting from the edges of its opposite surface
S(i+3) mod 6, the boundary propagation for surface Si in-
tersects with another block, then, from the first adjacent
node of the second block it reaches, the propagation will
merge into the surface Si of the second block. Such prop-
agation will continue along the other four adjacent surfaces
of the second block. And it will merge into the boundary
for Si of the second block, which starts from the edges of
S(i+3) mod 6 of the second block (see in Figure 3 (d)).

The boundary of a block in an n-D mesh starts from one
of its n-level corners. First, the boundary propagation will
go through all the n-level edge nodes and reach other n-
level corners. Each n-level edge node is also an (n − 1)-
level corner and has n − 1 (n − 1)-level edge nodes. The
corresponding connecting direction is called surface direc-
tion. Then, once an n-level edge node receives the boundary
information, the boundary propagation will continue along
n − 1 directions which are opposite to its surface direc-
tions. After that, the boundary propagation will continue
along such a direction until it reaches the outmost surface
of this n-D mesh. Figure 3 (b) shows such a step of bound-
ary propagation in 3-D meshes. If the boundary propagation
intersects with another block, from the first node which has
information of both boundaries, the propagation will merge
into the boundary of the second block. Figure 3 (d) shows
such a step of boundary propagation in 3-D meshes.

3 Fault Information Constructions in n-D
Meshes

In n-D meshes, the shape of a block may change during
a routing process with the occurrence of new faults or by the
recovery from faulty status. An extended enabled/disabled
labeling scheme is introduced to quickly identify those non-
faulty nodes in a block that may cause routing difficulty.
Definition 4: In an n-D mesh, if any new fault occurs, Def-
inition 1 is applied. If any node is recovered from faulty
status, it is labeled clean. A disabled node is labeled clean
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Figure 4. Recovery of faulty node in 3-D
meshes.

if it has a clean neighbor and has no two faults in different
dimensions. Once all its neighbors know its clean status in
the clean process, the clean node is labeled enabled. Each
enabled node applies Definition 1 until there is no status
change.

Based on Definition 4, there are three types of nodes af-
ter the procedure is stabilized: faulty nodes, enabled nodes,
and disabled nodes. After a new fault occurs, an enabled
node may change to disabled based on Definition 1 and af-
fect the status of its enabled neighbors. This propagation
will incur the construction of a new block. Specifically, a
recovered node is set to clean. This clean status will propa-
gate to any disabled non-faulty neighbor and contribute fur-
ther changes.

In Figure 4 (a), node (5,5,3) is recovered from faulty
status. First, (5,5,3) is labeled clean and it triggers the
change of status in its disabled neighbors (4,5,3), (5,6,3),
and (5,5,4) to clean. The procedure continues until there is
no further status change. The stabilized blocks are shown
in Figure 4 (b). Note that when (3,5,3) knows the status
change of (4,5,3), it does not change its status to clean since
it has two faulty neighbors in different dimensions. (4,5,3)
changes to enabled once all its neighbors know its clean sta-
tus. In the next round, it has one faulty neighbor (4,5,4) and
one disabled neighbor (3,5,3). Then, this new enabled node
will change to disabled when Definition 1 is applied.

This enabled/disabled labeling scheme in n-D meshes
can quickly identify those non-faulty nodes that may cause
routing difficulty by labeling them disabled. Each active
node collects its neighbors’ status and updates its status. For
each occurrence of a new fault or a new recovered node, the
new node status can be easily determined through rounds
of status exchanges among neighbors. Only those affected
nodes update their status. Such a procedure is called block
construction. Algorithm 1 shows the whole procedure of
block construction.

Algorithm 1: block construction

All non-faulty nodes are enabled; repeat

1. Every non-faulty node u exchanges its status with that of its
neighbors.

2. Based on the status information, u changes its status from
old to new following the rules:

• rule 1: enabled→disabled, if u has two or more dis-
abled or faulty neighbors in different dimensions.

• rule 2: disabled→clean, if u has a clean neighbor and
does not have two faulty neighbors in different dimen-
sions.

• rule 3: clean→disabled, if u has two or more faulty
neighbors in different dimensions.

• rule 4: clean→enabled, if u does not have two or more
faulty neighbors in different dimensions.

• rule 5: faulty→clean, if u is recovered.

until there is no status change.

On the other hand, after the block construction incurred
by some nodes recovered from faulty status, a block in n-D
meshes may shrink in size or be divided into several small
blocks. The deletion process starts and will propagate along
old boundaries when an n-level corner of the old block finds
that its existing condition cannot be satisfied. Also, to iden-
tify a new n-D block, an n-level identification process starts
whenever a new n-level corner is formed.

Any k-level (n ≥ k > 3) identification process has three
phases. In phase one, (k − 1) identification messages are
initiated at a k-level corner (also called initialization cor-
ner) and carry partial block information. They will be sent
to all (k − 1)-level edge nodes along each of (k − 1) sur-
face directions of that initialization corner. In phase two,
at each (k − 1)-level corner which is also a k-level edge
node, a down level ((k− 1)-level) identification is activated
and will be propagated to its opposite k-level edge node.
In phase three, the identified information of the down level
identification process is collected from all those opposite k-
level edge nodes and transferred to a k-level corner opposite
to the initialization corner. With the position information of
two k-level corners, the block is identified and block infor-
mation is formed at that opposite k-level corner.

After block construction is incurred by some new faults,
a block in n-D meshes may enlarge its size, or a new block
may appear in the network.

For example, a block [xmin:xmax, ymin:ymax,
zmin:zmax] in 3-D meshes is shown in Figure 5 (a). In
phase one, from a 3-level corner: C(xmax, ymin, zmax),
two identification messages are initiated. They carry the
position information of node C, the partial block infor-
mation, and will be sent along the X and Y dimensions
on the edges of the block (y = ymin ∧ z = zmax along
the X dimension and x = xmax ∧ z = zmax along the Y
dimension). In phase two, at each node on the edges, for

4
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Figure 5. The identification process in 3-D
meshes.

example, E(xe, ymin, zmax) on edge y = ymin∧z = zmax,
two identification messages are initiated and carry the
same partial block information. They will be sent to two
neighbors (xe, ymin + 1, zmax) and (xe, ymin, zmax − 1),
which are adjacent to the section of this block on plane
x = xe. Such propagation will continue until the message
traverses all the enabled nodes adjacent to the section of
the block on plane x = xe. These two messages from
E(xe, ymin, zmax) will reach the node E’(xe, ymax, zmin)
on the opposite edge y = ymax ∧ z = zmin. With the
position information of E and E’, the section of block on
plane x = xe, [ymin + 1 : ymax − 1, zmin + 1 : zmax − 1],
is identified (see in Figure 5 (b)). In a simi-
lar way, for each node E(xmax, ye, zmax) on edge
x = xmax ∧ z = zmax, the section of block on plane
y = ye ([xmin + 1 : xmax − 1, zmin + 1 : zmax − 1])
is identified at node E’(xmin, ye, zmin). In phase three,
the identified information is collected by a message from
the edge neighbor of corner (xmax, ymax, zmin) along
the X dimension (see in Figure 5 (b)) and a message
from the edge neighbor of corner (xmin, ymin, zmin)
along the Y dimension. These two messages will arrive
at the opposite corner C’(xmin, ymax, zmin). With the
position information of two corners C(xmax, ymin, zmax)
and C’(xmin, ymax, zmin), the block is identified and
block information [xmin + 1 : xmax − 1, ymin + 1 :
ymax − 1, zmin + 1 : zmax − 1] is formed.

After an n-level identification process, by using the
above procedure from the opposite n-level corner back to
the initialization n-level corner, the identified block infor-
mation is propagated to all the adjacent nodes, edge nodes
and corners of this block (see in Figure 6). To guide the
routing process, the block information is transferred along
the (n − 1)-dimensional boundary of the new block from
the n-level edge nodes when they get the identified infor-
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Figure 6. The propagation of identified block
information in 3-D meshes.

mation. In our reactive model, if any node already has the
new block information, there is no need to start new bound-
ary propagation. This propagation may also incur a deletion
of out of date boundaries and update the boundaries of other
blocks. Such a procedure is called boundary construction.
All these procedures are shown in Algorithm 2.

Algorithm 2: Block construction and information distribution

1. Block construction by applying Definition 4.

2. Identification of adjacent nodes and all levels of edge nodes
and corners.

3. n-level identification process from a new n-level corner:

(a) n − 1 identification messages are sent to n-level edge
neighbors until all connected n-level edge nodes re-
ceive the identification message.

(b) At each n-level edge node which is also an (n − 1)-
level corner, an (n − 1)-level identification process is
activated. The identified information will be collected
at the opposite (n − 1)-level corner.

(c) The identified partial block information is collected
and transferred to the opposite n-level corner to form
block information.

4. By using the above procedure from the opposite n-level cor-
ner back to the initialization n-level corner, the identified
block information is propagated to all the adjacent nodes,
edge nodes and corners. A boundary construction is acti-
vated at each n-level corner node of that new block that re-
ceives consistent block information.

Note that each identification message of the identifica-
tion process is expected to go straight to the outmost sur-
face of the meshes. If there is a faulty or disabled neighbor
in the forwarding direction, the new block is not stable. At
each node in phase 3 of the identification process, there is

5



a check of identified sections. If there is a different section,
the block is also not stable. In both cases, the message is
discarded at the current node to avoid generating incorrect
block information. If any message is discarded during the
identification process, the opposite corner cannot receive all
messages at the same time. That is, the shape of the block
may not be the exact one indicated by the positions of the
initialization corner and its opposite corner. TTL is associ-
ated with each identifying message in our n-D meshes, and
the corresponding message will be discarded once the time
expires. After n − 1 messages meet at the opposite corner
and form the block information, the procedure is reused to
propagate identified information. But this time, the stable
block ensures that the procedure will end at the initializa-
tion corner successfully.

4 Faulty-block-information-based Routing

Algorithm 3: Fault-information-based PCS routing

1. If the current node u is disabled, backtrack; otherwise,

2. pick an unused outgoing direction with the highest priority.
The address of u and the direction selected is recorded in the
message header.

3. If there is no unused outgoing direction, backtrack.

4. If the message is backtracked to the source, the destination is
unreachable.

Faulty-block-information-based routing in 2-D meshes
(see in [9]) can be easily extended to n-D meshes. Algo-
rithm 3 shows the routing process in n-D meshes. It is noted
that at a boundary, if it is critical, one preferred direction
changes to preferred but detour direction. Otherwise, there
is no preferred but detour direction. For the current node
u(6= d) with the incoming direction and 2n-1 possible out-
going directions, the routing selects one of the directions as
the forwarding direction in the priority order of preferred,
spare (along with block), preferred but detour, and incom-
ing directions.

After an n-level identification process, by using the
above procedure from the opposite n-level corner

It is also noted that each forwarding direction at a partic-
ipant node cannot be used again. Thus, like our routing in
2-D meshes, each routing header here includes a destination
address and a list of used-directions for each forwarding
node along the path. This is because the system is dynamic
and the priority of directions may change. Theorem 1 en-
sures the effectiveness of our fault information model when
faults are recovered in the networks.

Theorem 1: The constructions of the fault recovery do not
affect the optimal routing.

s source node
d destination node
u the current node
F number of faults in a k-ary n-D mesh
fi ith fault occurrence where i ∈ {1, 2, ..., F}

ti occurrence time of fi

di the interval between two consecutive fault occurrences
fi and fi+1, i.e., di = ti+1 − ti

t start time of a routing process
p number of fault occurrences before the routing starts
D distance from s to d

D(i) distance from u to d at time ti

ai total steps in which the stabilizing block construction
for fi converges

amax max{ai}

emax maximum length of edges of blocks
bi total rounds for the stabilizing identifying construction
ci total rounds for the stabilizing boundary construction
λ number of rounds of fault information constructions at

each step

Table 1. List of notations used in the paper

Proof: When nodes are recovered from a block, the old
block shrinks in each direction if it still exists. Suppose
that the block shrinks k hops in +X direction. According
to our procedure of block construction and information dis-
tribution, the deletion of the old boundary will be activated
from a certain node after the propagation of the new bound-
ary reaches it. Assume that a routing meets the boundary. If
the routing can access the dangerous area, it will meet the
constructed boundary of new blocks. The detour caused by
the new block can also be avoided.

5 Dynamic Fault Model

We adopt the same model of a 2-D mesh for activities in
a node of an n-D mesh. The model used represents a re-
active approach where information updates are done only
when there is a change of status of at least one neigh-
bor. At each step, every node in an n-D mesh starts with
fault detection of adjacent links and nodes, and then col-
lects and distributes three kinds of fault information: block
information, identifying information, and boundary infor-
mation through λ rounds of exchanges and update. The
disabled/enabled status propagation, any message header of
identifying/identified propagation, block information prop-
agation and canceling propagation advance one hop further
at each round. Before the end of each step, based on the
fault information, a routing decision selects a forwarding
node to forward the routing message and then the message
is sent to this forwarding node. Therefore, every routing
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Figure 7. (a) Actions within a step. (b) Interval
di.

message advances one hop along with its routing path at
each step. The actions within a step are shown in Fig-
ure 7 (a).

To simplify the discussion, it is assumed that any adja-
cent faults, links, and nodes are detected at the fault de-
tection phase (any faults occurring after the fault detection
phase will be detected at the next step). During the update of
fault information, each node can also receive one incoming
message (if any). It is also assumed that the action “mes-
sage receive” occurs right before the “routing decision”, as
shown in Figure 7 (a). The model used represents a reactive
approach where information update is done only when there
is a change of information of at least one neighbor.

We assume there are at most F faulty nodes in an n-
D mesh network, including dynamically generated faults.
Faults f1, f2, ..., fF occur at time t1, t2, ..., tF (see in Fig-
ure 7 (b)); respectively, where ti+1 − ti = di (1 ≤ i < F ).
To simplify our discussion, it is assumed that fault infor-
mation updating in the mesh is already stabilized before the
next fault occurrence, and there is no fault that occurs at the
outmost surface of an n-D mesh. Based on the properties
discussed in [14], there is no disconnected area in such a
mesh. It means that there is always a path between the en-
abled source and the enabled destination. Before a routing
message is initiated at time t, it is assumed that the first p

faults have already occurred; that is, p = max{l|tl ≤ t}. D

represents the distance from source s to destination d. D(i)
represents the distance from the current node u to the desti-
nation d at time ti when the ith fault (1 ≤ i ≤ F ) occurs.
Before the start time t, the routing message is at its source
and D(i) = D =| xs − xd | + | ys − yd | + | zs − zd |

(i ≤ m). For the ith fault change, the block construction
will be stabilized in dai

λ
e steps, the identifying construc-

tion will be stabilized in d bi

λ
e steps, and the boundary con-

struction will be stabilized in d ci

λ
e steps. We assume that

di > max{ai+bi+ci

λ
}. Therefore, before the next occur-

rence of fault (ti+1), the boundaries for the blocks at ti are
already stabilized. To simplify the discussion, Table 1 sum-
marizes the notations used here.

The discussion below will show that a routing message
has no more detours than an upper bound with the guide of
fault information.

6 Detour Analysis

In [14], Wu defines safe node in n-D meshes as follows:

Theorem 2 [14]: Assume that node (0,0, ..., 0) is the source
and node (u1, u2, ..., un) is the destination. If there is no
block that intersects with the section of [0 : ui] along each
axis for all i ∈ {1, 2, ..., n}, the source node is safe (to the
routing); otherwise, it is unsafe.

If the source is safe, a minimal path is guaranteed to the
destination as long as no new fault occurs during the routing
process.

Theorem 3: For any fault-information-based routing from
a safe source s to an enabled destination d, if D(i) > 0:


















D(i) = D where i ≤ p

D(i) ≤ D − (di−1 − t + tp − 2 ∗ ai−1 − 2 ∗ emax)
where i = p + 1

D(i) ≤ D(i − 1) − (di−1 − 2 ∗ ai−1 − 2 ∗ emax)
where i > p + 1

Proof: Since there is only one new block in each interval,
the worst case for a routing message is that it goes along
with the block construction and needs detours along the
block after that. It needs at most 2 ∗ ai + 2 ∗ emax ex-
tra steps in each interval di (F > i ≥ p). After the first
dp − t+ tp steps in interval dp, the routing message reaches
a node D(p + 1) from its destination. It advances at least
dp − t + tp − 2ap − 2emax steps closer to its destination.
For any other interval di, if D(i + 1) > 0, the routing mes-
sage advances at least di − 2ai − 2emax steps closer to the
destination.

Theorem 4: For a routing message from a safe source
s to an enabled destination d in an n-D mesh, the rout-
ing process will end in the following k intervals and k ≤
max{l|D + t− tp −

∑p+l−2
i=p (di − 2 ∗ai − 2 ∗ emax) > 0}.

The number of maximum detours is k ∗ (emax + amax).

Proof: Since there is only one new block in each interval, it
needs at most 2 ∗ ai + 2 ∗ emax extra steps in each interval.
The routing message advances at least dp+tp−t−2∗ap−2∗
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emax steps in the first interval. For any other interval di, the
routing message advances at least di−2∗ai−2∗emax steps.
If the routing will end in the following k intervals from time
t, the routing message at least advanced

∑p+k−2
i=p (di − 2 ∗

ai − 2 ∗ emax) steps along the path. Since the routing has a
safe source node, it has a path with D hops to the destination
at start time t. k ≤ max{l|D + t − tp −

∑p+l−2
i=p (di − 2 ∗

ai − 2 ∗ emax) > 0}.
A routing from an unsafe source to its destination may

need more detours. The following discussion extends the
above results for any routing message including that from
an unsafe source.

Theorem 5: If there is a path with length L from an enabled
source s to an enabled destination d in an n-D mesh, the
routing process will end in the following k intervals and
k ≤ max{l|L+t−tp−

∑p+l−2
i=p (di−2∗ai−2∗emax) > 0}.

Proof: The routing will advance along the path until the
path is disconnected by a new block. During each interval,
the routing needs at most 2(amax + emax) extra steps to go
back to the path. If the routing will end in the following k

intervals from time t, the routing message at least advanced
∑p+k−2

i=p (di − 2 ∗ ai − 2 ∗ emax) steps along the path and

k ≤ max{l|L+t−tp−
∑p+l−2

i=p (di−2∗ai−2∗emax) > 0}.

7 Conclusions

In this paper, we studied an upper bound of maxi-
mum detours in our limited-global-information based fault-
tolerant routing in n-D meshes (n ≥ 3) with dynamic faults.
The block information associated with each node on the
boundaries has been used to present limited global infor-
mation. Fault information construction including fault de-
tection, fault information exchanges and update, message
reception, routing decision, and message sending have been
proposed which are applicable to n-D meshes. Our study
shows that such limited global information can be collected
and distributed quickly to help the routing process. Appli-
cation of this approach to other fault models is an interesting
problems for future research.
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