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Abstract 

 

In nature the soft shell clam, Mya arenaria, develops a fatal blood cancer in which a highly 

conserved homolog for wild type human p53 protein is rendered non-functional by cytoplasmic 

sequestration. In untreated leukemic clam hemocytes, p53 is complexed throughout the 

cytoplasm with over-expressed variants for both clam homologs (full-length variant - 1200-fold 

and truncated variant - 620-fold above normal clam hemocytes) of human mortalin, an Hsp70 

family protein. In vitro treatment with etoposide only and in vivo treatment with either etoposide 

or mitoxantrone induces DNA damage, elevates expression (600-fold) and promotes nuclear 

translocation of p53 and results in apoptosis of leukemic clam hemocytes. Pretreatment with 

wheat germ agglutinin followed by etoposide treatment induces DNA damage and elevates p53 

expression (893-fold), but does not overcome cytoplasmic sequestration of p53 or induce 

apoptosis. We show that leukemic clam hemocytes have an intact p53 pathway and that 

maintenance of this tumor phenotype requires nuclear absence of p53 resulting from its 

localization in the cytoplasm of leukemic clam hemocytes. The effects of these topoisomerase II 

poisons may result as mortalin-based cytoplasmic tethering is overwhelmed by de novo 

expression of p53 protein following DNA-damage induced by genotoxic stress. Soft shell clam 

leukemia provides excellent in vivo and in vitro models for developing genotoxic and non-

genotoxic cancer therapies for reactivating p53 transcription in human and other animal cancers 

displaying mortalin-based cytoplasmic sequestration of the p53 tumor suppressor (currently - 

colorectal cancers and primary and secondary glioblastomas and not apparently leukemias or 

lymphomas). 
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Introduction 

In normal mammalian cells, p53 suppresses the formation of tumors by arresting the cell 

cycle or by apoptosis in response to genotoxic stress induced DNA damage (1). Levels and 

activity of p53 increase in response to DNA damaging agents (2-4). Transcription of p53-

regulated genes yields proteins that can edit and repair DNA and/or promote apoptosis based on 

the degree of DNA damage. Loss of cell cycle control results upon inactivation of p53 and loss of 

p53 transcriptional activity and can lead to development and progression of tumors (1). Non-

transcriptional induction of apoptosis can also occur through binding of mitochondrially-directed 

p53 and inactivation of Bcl2 or other anti-apoptotic proteins (5, 6). 

In this study, we use genotoxic stress induced DNA damage to promote expression and to 

reverse cytoplasmic sequestration of p53 and to restore its apoptotic function in a naturally 

occurring diffuse tumor of the hemocytes of the soft shell clam. In leukemic clam hemocytes, a 

highly conserved clam homolog for human p53 (Map53, GenBank accession number AF253323) 

is rendered non-functional by sequestration in the cytoplasm by both variants of the clam 

homolog for human mortalin (Mya arenaria mortalin - full length & truncated, GenBank 

Accession numbers AY326398 & EF576660, respectively) (7, 8). Truncated clam mortalin is 

missing exon 2 that includes the ATP-binding and ATPase domain required to reverse p53 

binding. We hypothesize that normal transcriptional functions of p53 in tumor suppression are 

silenced when clam mortalin proteins are over-expressed. For instance, transcriptionally 

controlled editing and repair of DNA and induction of apoptosis would not be initiated by p53 

that cannot enter the nucleus, bind DNA and direct the expression of relevant genes. Similarly, 

ubiquination dictated by Mdm2 binding to the TAD of p53 or by CIP1 down regulation of G1 
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cyclin/CDK dependent phosphorylation and activation of p53 cannot occur. Cytoplasmic 

sequestered p53 might still direct non-transcriptional initiation of apoptosis at the mitochondria if 

mortalin binding does not interfere with this pathway (9). 

While cytoplasmic sequestration has not yet been recorded for human leukemias or 

lymphomas, a subset of naturally occurring but unrelated human cancers do retain p53 in the 

cytoplasm (e.g., undifferentiated neuroblastoma, breast, retinoblastoma, colorectal 

adenocarcinomas and glioblastoma (10-12) and this phenotype can be induced in mouse NIH 

3T3 and human HeLa cells (13-16). In all of these cases, wild type p53 is inactivated because it is 

retained in the cytoplasm. A variety of molecular mechanisms have been linked to cytoplasmic 

sequestration in these human cancers, e.g., truncation of the nuclear localization motif receptor 

protein, importin α (17); overactive nuclear export by an Mdm2 dependent pathway (18) and 

cytoplasmic tethering by foreign (viral) (19) or local cytoplasmic proteins (9, 15, 20). In human 

colorectal cancer cells and leukemic clam hemocytes, mortalin is responsible for cytoplasmic 

tethering when the latter protein is over-expressed (8, 21). Dundas et al indicate that high levels 

of mortalin expression are correlated with poor clinical outcome for colorectal cancer. A recent 

study of primary and secondary glioblastomas suggests that mortalin and/or other tethering 

molecules (e.g., cullin 7 or PARC) may be also be responsible for cytoplasmic sequestration in 

these cancers (12).  

In the current study we use leukemic clam hemocytes for in vitro and in vivo assays to 

evaluate cytotoxicity, intracellular localization of p53, DNA damage and apoptosis following 

treatment with two genotoxic DNA topoisomerase II poisons, etoposide and mitoxantrone. Since 

we were investigating a blood disease in the clam, these topoisomerase II poisons were originally 

chosen from the standard agent database at the National Cancer Institute because they are highly 
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cytotoxic to human lymphoblastic leukemia cell lines (22) and have demonstrated effectiveness 

against human leukemias and lymphomas 

(www.dtp.nci.nih.gov/docs/compare/examples/topoii.html).  Importantly these topoisomerase II 

poisons do have significant genotoxic effects on a variety of human cancers, but have never been 

evaluated in terms of their effects on cancers resulting from mortalin-based cytoplasmic 

sequestration. 

Understanding the molecular basis for this negative regulatory pathway for p53 might 

lead to therapies for any human cancer where cytoplasmic sequestration is mediated by mortalin. 

As Martins et al (23) point out, “reinstatement of p53 function is an attractive tumor-specific 

therapeutic strategy, but it will only work if tumors harbor persistent p53-activating signals that 

engage growth inhibition or death.” In the present study, we show that clam leukemia cells have 

an intact p53-activating pathway leading to apoptosis and that maintenance of this diffuse tumor 

requires nuclear absence of p53 dictated by its localization in the cytoplasm. 

 

Materials and Methods 

 Clams. Soft shell clams (Mya arenaria, n ≈ 150-200) were collected at the lowest tides of 

each month from sand flats on Marsh Island in New Bedford Harbor at Fairhaven, Massachusetts 

(41
o
 38.0’ N 70

o 
55.0’ W) and were maintained at the UNH Coastal Marine Laboratory, New 

Castle, New Hampshire. For biopsy, a small aliquot of hemolymph (10 µl) was removed from the 

pericardial sinus and incubated for 2 hours at 8°C. Clams were classified with a Zeiss IM 

inverted microscope as normal (zero % round, non-motile leukemic clam hemocytes; 100% 

attached normal clam hemocytes), early incipient leukemic (1-50% leukemic clam hemocytes), 

late incipient leukemic (50-99% leukemic clam hemocytes) or fully leukemic (100% leukemic 
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clam hemocytes). In 51 collections made over a 5yr period the average number of clams that was 

100% leukemic was 5.64%; the range was 0-11%. Only fully leukemic clams were used for the 

experiments presented in this study. 

 Antibody for p53. A polyclonal antibody to Mya arenaria p53 protein (Map53 rabbit 

anti-clam polyclonal) was raised against a peptide synthesized from a highly immunogenic region 

in the core sequence of clam p53 and including part of DNA binding domain V (Map53 23-mer 

CACPGRDRKADERGSLPPMVSGG). The polyclonal antibody obtained was successfully 

screened for its ability to recognize clam p53 in Western blot analysis of both in vitro expressed 

clam proteins and whole cell extracts collected in vivo from leukemic and normal clam 

hemocytes (7). 

 Treatment of Leukemic Clam Hemocytes with leptomycin B (LMB) in vitro. In order 

to determine if overactive nuclear export is responsible for cytoplasmic sequestration of p53, 

leukemic clam hemocytes were treated with LMB which blocks CRM1-mediated nuclear export. 

Hemolymph was removed from the pericardial sinus of fully leukemic (100%) clams. Blood was 

divided into eight tubes for time zero, 4, 8, and 24 hrs with two treatments per time (control and 

LMB treatment). LMB treatments only received a final concentration of 115 nM LMB, control 

treatments received normal clam medium without the drug. All tubes were maintained on a 

rotator at 8
o
C for the required length of time. At each time point (time zero 4, 8 and 24 hrs) 

nuclear and cytoplasmic protein extractions (NEPER, Pierce) were performed and clam p53 

distribution was determined using western blotting. 

 Treatment of Leukemic Clam Hemocytes with Topoisomerase II Poisons in vitro. 

Hemolymph was removed from the pericardial sinus of fully leukemic (100%) clams and was 

diluted with clam culture medium (24) to 4 x 10
5
 leukemic clam hemocytes ml

-1
. Hemolymph 
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and topoisomerase II poisons (0-0.07 mM mitoxantrone and 0-0.1 mM etoposide) were diluted 

with clam culture medium to a final concentration of 1 x 10
5
 leukemic clam hemocytes ml

-1
 in 

1.5 ml microcentrifuge tubes (Fisher Scientific). Samples of 400 ml were removed at time zero, 6 

and 18 hours; In vivo - To approximate drug concentrations used in vitro (0.07 mM mitoxantrone 

and 0.075 mM etoposide), hemolymph volumes were estimated based on clam shell size and the 

appropriate concentrations of drugs were injected immediately following the zero time biopsy. 

Additional biopsies were performed at 8, 20 and 24 h on 800 µl of hemolymph removed from the 

pericardial sinus.  

 Pretreatment of Leukemic Clam Hemocytes with wheat germ agglutinin (WGA) in 

vitro. To evaluate mechanism of action of p53 and detect any alternative routes leading to 

apoptosis, we set up four treatments, leukemic clam hemocytes untreated, leukemic clam 

hemocytes treated with WGA only, leukemic clam hemocytes treated with 0.075 mM etoposide 

only and leukemic clam hemocytes pre-treated with WGA followed by exposure to 0.075 mM 

etoposide. Pre-treatment of leukemic clam hemocytes with WGA was conducted using FITC-

labeled WGA (Sigma) that was transfected into the cells using the Chariot protein delivery 

system (Active Motif). WGA was allowed to couple with the Chariot compound for 30 minutes 

at room temperature to form complexes that were incubated for 1 hr with leukemic clam 

hemocytes suspended in clam culture medium at concentrations of 6 x10
5
 hemocytes/100 µl 

medium. Successful transfection of WGA into leukemic clam hemocytes results in blockage of 

the nuclear pores and translocation of p53 into the nucleus should also be blocked. De novo or 

unbound p53 should be directed to mitochondria resulting in non-transcriptional induction of 

apoptosis. Following transfection, all treatments (control and etoposide treated) were allowed to 
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incubate for 6 hrs, nuclear and cytoplasmic proteins separated (NEPER, Pierce) and clam p53 

distribution determined using western blotting. 

 Cytotoxicity Assay. Prior to in vitro and in vivo drug treatments lactate dehydrogenase 

activity (LDH) was measured (Promega, CytoTox 96® Non-Radioactive Cytotoxicity Assay 

G1780) using increasing numbers of leukemic clam hemocytes (0-140,000 cells) to test the 

validity of this assay in the clam model, determine the numbers of leukemic clam hemocytes 

needed and adjust environmental conditions (e.g. temperature). Once these parameters were 

determined, we followed the procedure and analyses described by Promega and utilized in over 

350 published studies. 

 Immunocytochemistry. Cytospins of 100 µl of leukemic clam hemocytes from untreated 

and treated individuals in vitro and in vivo were fixed and permeabilized by immersion in 

acetone. These preparations were treated with the clam p53 primary antibody (7). Resulting 

preparations were developed with a peroxidase labeled secondary antibody (Vectastain ABC 

Elite IgG kit, Vector Laboratories). Control cytospins received identical treatment in the absence 

of primary antibody. After completing the assay, fields of 200 leukemic clam hemocytes were 

counted and scored into three categories: a) cells with predominantly nuclear clam p53, b) cells 

with predominantly cytoplasmic clam p53 and c) cells where the intracellular distribution of clam 

p53 was indeterminate. The non-parametric Wilcoxon-Mann-Whitney test was applied to assess 

differences between results in catagories a-c and between time-points. 

 Western Blotting. To determine the cellular localization of p53 protein, nuclear and 

cytoplasmic proteins were extracted from 200µl of hemolymph containing leukemic clam 

hemocytes at each time point during treatment with mitoxantrone and etoposide using NE-PER 

(nuclear and cytoplasmic extraction reagents, Pierce). Total protein was measured 
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spectrophotometrically (Ultraspec 3100) using a modified Lowry procedure (Bio-Rad protein 

assay). Nuclear and cytoplasmic proteins (37.5 µg) were assayed by western blotting on 4-15% 

Tris-HCl Ready gels (Bio-Rad) transferred to a PVDF membrane (Bio-Rad), treated with the 

clam p53 primary antibody and visualized colorimetrically (7).  

 Comet Assay. To detect DNA damage during in vitro and in vivo drug treatments with 

topoisomerase II agents (measured as DNA fragmentation and observed as a comet-shaped tail 

discharged from the nucleus) COMET assays were performed at each time point (Trevigen 

CometAssay
TM

 kit, 4250-050). Results were scored as percent of DNA damaged cells in a total 

of 100 cells. 

 Apoptosis Assays. To document apoptosis, Romanovsky staining (ThermoShandon, 

Kwik
TM

 Diff Stain Kit) and the TUNEL assay (In situ cell death detection kit, AP, Roche) were 

performed on cytospins of leukemic clam hemocytes at 6 hrs in vitro and 8 hrs in vivo. Following 

staining, hemocytes were mounted under coverslips with Permount (for Romanovsky, Fisher 

Scientific) or with Vectashield (for TUNEL, Vector Laboratories) and scored at 600x on a Zeiss 

Axioplan II microscope (Carl Zeiss, Inc., Thornwood, N.J.) (25). For the Romanovsky assay, 

cells were designated as apoptotic when intracellular vacuoles were observed and apoptosis was 

expressed as a percentage in a total of 100 cells. For the TUNEL assay results were scored as 

percentage of apoptotic cells (TUNEL positive cells) out of total of 100 cells. 

 Quantitative PCR (QPCR). To document expression of mortalin and p53, 500 µl of 

hemolymph were removed from normal, leukemic and 0.075 mM etoposide treated leukemic 

clams (with and without prior treatment with WGA).  The hemolymph was centrifuged at 3,000g 

for 10 min, RNA extracted using Trizol (Invitrogen) and cDNA synthesized using SuperScript
TM

 

First-Strand Synthesis System (Invitrogen). All samples were prepared for QPCR using the 
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Taqman  Fast System (Applied Biosystems) and run in a 7500 Fast RT-PCR System (Applied 

Biosystems) at 45 cycles of 95°C with automatically set Ct. 

 

Results 

 Treatment with 115 nM of the nuclear export blocker leptomycin B for 8 and 24 hours did 

not result in localization of p53 in the nucleus, suggesting that overactive nuclear export of p53 

mediated by CRM1 is not responsible for cytoplasmic sequestration in leukemic clam hemocytes 

(results not shown).  

 LDH activity decreased for leukemic clam hemocytes treated with etoposide at 6 hrs in 

vitro (0-0.1 mM etoposide) and 8 hrs in vivo (0.075 mM etoposide only; p<0.001) indicating 

increased cytotoxicity (ANOVA on arcsine transformed data, Fig. 1). LDH activity increased at 

18 hrs of treatment in vitro (0-0.1 mM etoposide) and 20-24 hr treatment in vivo (0.075 mM 

etoposide only) using etoposide and indicating decreased cytotoxicity. Treatment of leukemic 

clam hemocytes for 8 hrs with mitoxantrone in vivo (0.07 mM mitoxantrone) resulted in 

increased cytotoxicity. Following treatment for 20 hrs cytotoxicity decreased, followed by an 

increase at 24 hrs of treatment. In vitro treatment with mitoxantrone (0-0.07 mM mitoxantrone) 

resulted no changes in these parameters (p=0.087). 

 Nuclear clam p53 increased following treatment with 0.07 mM mitoxantrone in vivo (p = 

0.047) while in vitro treatment with this drug had no effect (Kruskal-Wallis followed by 

Bonferroni test, Fig. 2). Both in vitro and in vivo treatments with etoposide (0.075 mM) resulted 

in increased nuclear clam p53. This result was most pronounced during in vivo treatment.  

 Following treatment of leukemic clam hemocytes with etoposide in vitro and in vivo, the 

Comet assay indicated increased DNA fragmentation, while treatment with mitoxantrone yielded 
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DNA fragmentation in vivo only (Mann-Whitney-test, Fig. 3A and B). DNA fragmentation was 

notably higher in leukemic clam hemocytes treated with etoposide in vitro. Following treatment 

with mitoxantrone and etoposide, apoptotic leukemic clam hemocytes increased both in vitro and 

in vivo. However, apoptosis occurred less frequently following treatment with mitoxantrone than 

following treatment with etoposide (Mann-Whitney-test, Fig. 3 C and D). Percentages of 

apoptotic leukemic clam hemocytes were significantly lower when assessed by observations of 

Romanovsky stained cells than by the TUNEL assay. Analysis by Romanovsky staining detects 

apoptosis at a later stage when leukemic clam hemocytes are forming internal vesicles; the more 

sensitive TUNEL assay provides a quantitative estimate of apoptotic DNA damage at an earlier 

stage and yields a significantly higher estimate for apoptotic leukemic clam hemocytes. 

 After transfection of leukemic clam hemocytes with the nuclear pore blocker wheat germ 

agglutinin followed by etoposide treatment, p53 was found only in the cytoplasm of leukemic 

clam hemocytes and was not transported into the nucleus and no increase in apoptotic cells was 

noted (results not shown). Frequencies of apoptotic cells were lower in leukemic clam 

hemocytes pre-treated with WGA (15.3%) than in hemocytes treated directly with 0.075 mM 

etoposide (74.4%). 

 Expression of p53 did not differ between untreated normal and leukemic clam 

hemocytes. In leukemic clam hemocytes treated with etoposide, p53 was over-expressed 602 fold 

compared to untreated leukemic hemocytes, which showed higher expression than normal clam 

hemocytes by 30% (Table 1). When transfected with the nuclear pore blocker wheat germ 

agglutinin, followed by treatment with etoposide, p53 was over-expressed 893 fold compared to 

untreated normal clam hemocytes. Expression of mortalin differed between normal and leukemic 

clam hemocytes by 1634 and 619 times for the long and short versions respectively. Additional 
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increase of mortalin expression was observed in leukemic clam hemocytes treated with etoposide 

by 204 fold for the long variant and 159 fold for the short variant. 

 

Discussion 

 Non-genotoxic and genotoxic strategies for reactivating p53 function are of high interest 

since they may lead to promising cancer therapies (23, 26-28). Based on an understanding of the 

normal p53 mediated pathway for suppressing cancer induction, strategies for reactivating p53 

have been proposed. Among others these include: stabilizing p53 using small molecule Mdm2 

antagonists (e.g., nutlins) (29-32) and inducing de novo expression of p53 following DNA 

damage resulting from genotoxic stress or gene therapy (33-35).  

 Previous studies in humans and clams have shown that the cationic inhibitor of mortalin, 

MKT-077 competes with mortalin for p53 binding and results in translocation of p53 to the 

nucleus followed by rapid apoptosis (8, 36, 37). Use of this small molecule does not induce 

DNA-damage or elevate transcription of p53.  

 In the present study, we utilize genotoxic stress to promote transcription of de novo wild 

type p53, translocation of p53 to the nucleus and apoptosis of leukemic clam hemocytes. The 

apoptotic outcome can be prevented following transfection with the nuclear pore blocker wheat 

germ agglutinin. While cytoplasmic sequestration of p53 occurs in a variety of human 

cancers, no one has previously linked treatment with these topoisomerase II poisons to 

reversal of mortalin-based cytoplasmic sequestration and apoptotic death of cancer cells in 

any organism. 

Mortalin is a member of the Hsp70 family of proteins that is not upregulated by heat. In 

mammals, it functions in mitochondrial import, energy generation, chaperoning of misfolded 
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proteins, as a stress sensor and is involved in carcinogenesis and old age disorders (e.g., 

Parkinson’s, Alzheimer’s and Huntington’s diseases) (9). We have identified two variants of 

mortalin in the clam, a full length and a truncated variant. Both contain an N-terminal 

mitochondrial localization signal and a p53 binding site, but the truncated variant is missing 

amino acids represented by exon 2, which contain ATP binding and ATPase functions, necessary 

for releasing p53 from binding. Both variants are complexed in the cytoplasm of leukemic clam 

hemocytes with p53. At this point it is unclear if either over-expressed variant is exclusively 

responsible for sequestering p53 in the cytoplasm of leukemic clam hemocytes. While both 

variants of mortalin are also minimally upregulated following treatment with etoposide, mortalin-

based cytoplasmic tethering mechanism is apparently still overwhelmed, allowing nuclear 

translocation of untethered clam p53. 

 Etoposide forms a complex between DNA and DNA topoisomerase II resulting in 

decreased DNA religation and strand breaks (38); secondary cancers can result (39, 40).  Over-

expression of wild type p53 facilitates etoposide induced death of cancer cells in human colon 

carcinoma cell lines (HCT116 and RKO) (3). In the current study, treatment of leukemic clam 

hemocytes with etoposide resulted in DNA damage and increased expression of clam p53 

followed by nuclear translocation of some p53 and apoptosis.  

 Mitoxantrone causes crosslinking and DNA strand breaks and interferes with the function 

of DNA toposiomerase II and with DNA repair. Mitoxantrone kills both proliferating and 

nonproliferating cells. (41,42). In the current study, mitoxantrone was minimally effective at 

reversing cytoplasmic sequestration of clam p53 in vivo and had no obvious effects in vitro. 

Discrepancies between data acquired in vivo and in vitro for mammalian cells derived from the 

same source tissues are common in preclinical pharmacokinetic studies (22).  
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 The most attractive interpretation of our data is that treatment with etoposide and 

mitoxantrone poisons elevates p53 levels in the cytoplasm of leukemic clam hemocytes and that 

de novo p53 protein overwhelms mortalin-tethering resulting in nuclear translocation of some 

p53 followed by cytotoxicity, DNA damage and apoptosis of leukemic clam hemocytes. Upon 

entering the nucleus following etoposide or mitoxantrone treatment, de novo clam p53 may be 

phosphorylated and stabilized by ATM that senses DNA damaged induced by these drugs (43). 

Such stabilization would effectively increase the intranuclear concentration of p53 since Mdm2 

could not bind p53 at its TAD and p53 would not be subject to Mdm2-induced ubiquination and 

digestion by 26S proteosomes (44). Mdm2 levels may be low or non-existent anyway since 

cytoplasmically sequestered p53 was not originally present in the nucleus to induce transcription 

of this gene. Following treatment with topoisomerase II poisons, other proteins upregulated by 

p53 mediated transcription would be active in evaluating and repairing DNA or, failing that, in 

inducing apoptosis of leukemic clam hemocytes with severely damaged DNA. This condition 

would simplify the p53 mediated response, leading to the rapid apoptosis of leukemic clam 

hemocytes that we have observed. We saw limited evidence (15%) for transcription-independent 

initiation of apoptosis via transport to the mitochondria when cells were treated with wheat germ 

agglutinin followed by etoposide (45). Under these conditions, it is likely that, de novo p53 

mRNA is retained in the nucleus and that additional p53 protein is not produced (46).  Finally, 

when mortalin is overexpressed and tethers p53 in the cytoplasm of leukemic clam hemocytes, 

the interaction of p53 with BCL2 or other antiapoptotic molecules at the mitochondria may be 

restricted or absent, curtailing or preventing this alternative apoptotic induction pathway (9, 47). 
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Tables 

 

Table 1 Quantitative PCR results (%) for cDNA from leukemic clam hemocytes, leukemic 

clam hemocytes transfected with the nuclear pore blocker wheat germ agglutinin (WGA) 

followed by 10 hr treatment with 0.075 mM etoposide. All results were normalized against Ct 

values from normal clam hemocytes, assuming that Ct values from normal clam hemocytes were 

the baseline; LCH = leukemic clam hemocytes, Etopo = etoposide, WGA = wheat germ 

agglutinin, mortalin LV = long variant of mortalin, mortalin SV = short variant of mortalin. 

 p53 expression mortalin LV expression mortalin SV expression 

LCH 47.0 1633.6 619.0 

LCH + Etopo 602.1 1837.9 778.1 

LCH + WGA + Etopo 893.8   
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Figure Legends 

Fig.1  Cytotoxicity of Leukemic Clam Hemocytes  

Lactate dehydrogenase activity (% LDH) measured cell proliferation of leukemic clam 

hemocytes following treatment with A) mitoxantrone (0-0.07 mM) in vitro; B) etoposide (0-0.1 

mM) in vitro and C) mitoxantrone (0.07 mM) and etoposide (0.075 mM) in vivo. Cytotoxicity of 

leukemic clam hemocytes was expressed as % and determined using media background 

absorbance, untreated cell absorbance, treated cell absorbance (termed experimental release) and 

maximal lysed cell absorbance (termed target maximum release). 

 

Fig. 2 Localization of Clam p53 within Leukemic Clam Hemocytes Using 

Immunocytochemistry  

Distribution (%) of nuclear and cytoplasmic clam p53 in leukemic clam hemocytes: A) with 

mitoxantrone (0-0.07 mM) and etoposide (0-0.75 mM) in vitro and B) with mitoxantrone (0.07 

mM) and etoposide (0.075 mM) in vivo. Results for clam p53 distribution for a total of 200 

leukemic clam hemocytes are subdivided into three different scoring categories: leukemic clam 

hemocytes with predominantly nuclear clam p53, leukemic clam hemocytes with predominantly 

cytoplasmic clam 53 and leukemic clam hemocytes where the intracellular distribution of clam 

p53 was undetermined, Map53 = clam p53 (48).  

 

Fig. 3 DNA Fragmentation and Apoptosis Assays of Leukemic Clam Hemocytes  

Frequency of DNA damaged cells (Comet Assay; %) of leukemic clam hemocytes following 

treatment with mitoxantrone A) and etoposide B) Results were determined by migration of 

denatured and cleaved DNA fragments in 100 cells (“comet tails”) indicative of DNA damage. 
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Large graphs show results in vitro, while insets display in vivo experimental data and frequency 

of apoptotic cells in leukemic clam hemocytes treated with mitoxantrone and etoposide using C) 

Romanovsky stain and D) TUNEL assay as detection methods; apoptosis was determined by the 

development of intracellular vacuoles and the degree of nuclear fluorescence respectively. 

Analysis by Romanovsky staining detects apoptosis at a much later stage when leukemic clam 

hemocytes are forming internal vesicles and is qualitative; the more sensitive TUNEL assay 

provides a quantitative estimate of DNA damage at an earlier stage of apoptosis and thus detects 

a greater number of apoptotic leukemic clam hemocytes. Both results were expressed as a 

percentage of 100 cells counted. 

 

  








	West Chester University
	Digital Commons @ West Chester University
	2008

	Genotoxic Stress-Induced Expression of p53 and Restoration of Apoptosis in Leukemic Clam Hemocytes with Cytoplasmically Sequestered p53
	Stefanie Boettger
	Emily Jerszyk
	Ben Low
	Charles Walker
	Recommended Citation


	/rrdata/pdfconv/queue02/tmp/tifFigure_1.tif-  1
	/rrdata/pdfconv/queue02/tmp/tifFigure_2.tif-  1
	/rrdata/pdfconv/queue02/tmp/tifFigure_3.tif-  1

