West Chester University Digital Commons @ West Chester University

Biology Student Work

Biology

4-29-2021

Identification of mitochondrial transfer sequences in homologs of a folic acid metabolism gene

Alyson Hally West Chester University of Pennsylvania

Follow this and additional works at: https://digitalcommons.wcupa.edu/bio_stuwork

Part of the Genetics Commons

Recommended Citation

Hally, A. (2021). Identification of mitochondrial transfer sequences in homologs of a folic acid metabolism gene. Retrieved from https://digitalcommons.wcupa.edu/bio_stuwork/13

This Poster is brought to you for free and open access by the Biology at Digital Commons @ West Chester University. It has been accepted for inclusion in Biology Student Work by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact wcressler@wcupa.edu. Identification of mitochondrial transfer sequences in a folic acid metabolism gene

ALYSON HALLY

Neural Tube Defects and Folic Acid

- Second leading cause of congenital birth defects
- Around 1 in 1,000 births experience a neural tube defect (open spina bifida and anencephaly)
- Neural tube structure is a structure that gives rise to brain and spinal cord
- Nutritional levels of folic acid are linked to risks of neural tube defects
 - Increased levels of folic acid decrease risk of neural tube defects
- > A possible mechanism suggests folic acid levels affect neural tube development
- > Altered folic acid levels increase the risk of cancers such as colorectal and breast cancer

Anencephaly

Open spina bifida Images: https://www.cdc.gov/ncbddd/birthdefects/facts-about-neural-tube-defects.html

Serine Hydroxymethyltransferase (SHMT)

- One of the many proteins in folic acid metabolism
- Metabolizes glycine to serine in folic acid metabolism
- Assists to create one-carbon groups
- Metabolism occurs in two areas:
 - cytosol and nucleus
 - mitochondria

Image: Xiu, et al. 2020 Tramonti, et al. 2018

Focus

- C. elegans have one Shmt gene while most Eukaryotes have two genes
- Q: Is the C. elegans Shmt homolog, mel-32 localized to the cytosol, mitochondria, or both?
- Q: Do any other organisms have isoforms instead of genes?
- Q: Can these isoforms be used to determine any potential mitochondrial transfer sequences?

Methodology

Sampled 17 species from the 3 domains, 4 kingdoms within Eukaryotes, and 11 phyla within the animal kingdom

Identified Shmt homolog(s) from sampled species

Determined whether if the *Shmt* was mitochondrial or cytosolic

Compared Shmt(s) within species to determine if they were isoforms or independent genes

Identified mitochondrial transfer sequences from isoforms

Analyze SHMTs for phylogenic similarities (all, cytosolic, and mitochondrial)

What is an Isoform?

Since isoforms are localized to different targets, the difference must be in the targeting sequence!

Proteins are Localized Through Target Sequences

- A target sequence is required for proteins to be localized to the mitochondria (like a zip code!)
- N-terminal encodes the target sequences
- Sequences have similar physiochemical properties
- Research shows a conserved pattern for mitochondrial target sequence: φ X X φ φ
 - φ (phi) indicates a bulky hydrophobic residue (but can tolerate glycine, proline, and alanine)
 - X indicates any amino acid
- The N-terminal amino acid sequence interacts with the receptors, translocase of the outer and inner mitochondrial membranes

Image: Renwick, et al. 1998 Obita, et al. 2003 Mukhopadhyay, et al. 2006

Discovery of Isoforms of *mel-32*

mel-32 is the C. elegans homolog of Shmt

- mel-32 previously has not been published as producing isoforms because it is not widely researched
- mel-32 isoforms were found on genetic database (Wormbase: C05D11.11)

<i>mel-32</i> : isoform A Cytosolic: 0.0442 Signal: 0.0018 Mitochondrial: 0.9541	
<i>mel-3</i> 2: isoform B Cytosolic: 0.9999 Signal: 0 Mitochondrial: 0.0001	A C C C C C C C C C C C C C C C C C C C

Table 1: Determined SHMT Localizations and Percent Identity within Species

-

1.5

	Kingdom/ Phylum		Mitochondrial	Cytosolic	Undeclared	Percent
	Representation	Organism	SHMT	SHMT	SHMT ²	Identity
	Stramenopiles (Protists)	Thalassiosira pseudonana	XP_002295557	XP_002289669 XP_002293993		54.58- 58.54
	Plant	Arabidopsis thaliana	NP_195506 NP_001331385	NP_193129 NP_193125 NP_001323098 NP_564473	NP_001119098	47.59- 85.24
	Fungi	Saccharomyces cerevisiae	AAA21024	AAA21023		59.10
	Porifera	Amphimedon queenslandica	XP_019854079	XP_019854080	XP_003387864	99.20- 100.00
	Cnidaria	Actinia tenebrosa	XP_031559133	XP_031558549		63.00
	Platyhelminthes	Opisthorchis viverrini	OON24063 XP_009166916	OON23958 XP_009166918		54.60- 100.00
	Annelida	Capitella teleta	ELU01860	ELU03449		64.39
	Mollusca	Crassostrea gigas	XP_011420488	XP_011435353 XP_034311075		59.79- 100.00
	Rotifera	Brachionus plicatilis		RMZ93562 RNA14241		24.17
	Nematoda	Caenorhabditis elegans	NP_741197	NP_001367440		100.00
	Arthropoda	Drosophila melanogaster	NP_572278	NP_001138162		100.00
	Echinodermata	Strongylocentrotus purpuratus	XP_030829045	XP_798074 XP_011661053		54.29- 100.00
	Chordata	Ciona intestinalis	XP_002126094	XP_002127233		60.50
	Chordata	Homo sapiens	NP_005403	NP_004160		63.45

Identification of Mitochondrial Transfer Sequences

- Mitochondrial transfer sequences are based off the motif, $\phi X X \phi \phi$
- The three species sampled from Porifera, Nematoda, and Arthropoda had at least two isoforms with different localizations

A. Amphimedon queen	nslandica Isoforms	
XP_019854079.1 XP_003387864.2 XP_019854080.1	MSCKLFWIMSITCMGATIVGVFLKKAESLRRTRERCITVITKAAKVTFRALDRRFQQVMA	26 60 2
B. Caenorhabditis elee	rans Isoforms	
NP 741107 1		60
NP_001367440.1		37
C. Drosophila melanog	<i>gaster</i> Isoforms	
NP_572278.1 NP_001138162.1	MQRARSTLTQKLRFCLSRDLNTKVGNPVNFETGKLSGALTRIAAKKQPSPTPFLPAIRRY	60 0
NP_572278.1	SDSKQST_KNMADQKLLQTPLAQGDPELAELIKKEKERQREGLEMIASENFTSVAVLESL	120
NP_001138162.1	MADQKLLQTPLAQGDPELAELIKKEKERQREGLEMIASENFTSVAVLESL ***********************************	50

Accepted Phylogeny

Tested Cytosolic SHMT Phylogeny

Accepted Phylogeny

Tested Mitochondrial SHMT Phylogeny

Results and Takeaways

Identified Mitochondrial Transfer Sequences

- Successful in identifying potential mitochondrial presequences
- Future experiments can be done to:
 - (1) confirm C. elegans isoform is localized to the mitochondrial,
 - (2) determine if both isoforms in C. elegans are essential
 - (3) determine which amino acid(s) are essential for mitochondrial targeting

Phylogenic Comparisons

- Cytosolic SHMT and Mitochondrial SHMT were closer together unless the SHMTs originated from isoforms
- Key differences include (1) Platyhelminthes difference, and (2) similarity between Cnidaria and Chordata
- Due to Tardigrada's association with Nematoda and Arthropoda, it can be hypothesized that Tardigrada has a mitochondrial SHMT isoform (which has not been identified yet)

THANK YOU TO DR. SULLIVAN-BROWN FOR ALL YOUR HELP!

Questions?