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Abstract 

 

The data quality of commercial business and financial databases greatly affects research quality and reliability. 

The presence of data quality problems can not only distort research results, destroy a research effort but also 

seriously damage management decisions based upon such research. Although library literature rarely discusses 

data quality problems, business literature reports a wide range of data quality issues, many of which have been 

systematically tested with statistical methods. This article reviews a collection of the business literature that 

provides a critical analysis on the data quality of the most frequently used business and finance databases 

including the Center for Research in Security Prices (CRSP), Compustat, S&P Capital IQ, I/B/E/S, 

Datastream, Worldscope, Securities Data Company (SDC) Platinum, and Bureau Van Dijk (BvD) Orbis and 

identifies 11 categories of common data quality problems, including missing values, data errors, discrepancies, 

biases, inconsistencies, static header data, standardization, changes in historic data, lack of transparency, 

reporting time issues and misuse of data. Finally, the article provides some practical advice for librarians to 

facilitate their scholarly communications with researchers on data quality problems. 

 

Introduction 

 

Business and finance databases are crucial for academic business research. Each year, thousands of empirical 

research articles are published based on the data from these databases.1 The quality of the data can have a great 

impact on research quality and reliability. The presence of data quality problems can not only distort research 

results, destroy a research effort but also seriously damage management decisions based upon such research 

(Rosenberg & Houglet, 1974). Data quality issues are also relevant to business librarianship since evaluating 

information quality is an integral part of business information literacy. Anecdotally, many business librarians 

                                                
1 It is hard to estimate the volume of research conducted using business databases, but a conservative estimation with Google 
Scholar shows that there are over six thousand articles published in 2019 mentioned Compustat alone. 
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have encountered data quality problems, but very few have documented or discussed data problems in library 

literature. The only article found in the business library literature that tested and discussed data quality 

problems is titled “An issue of trust: are commercial databases really reliable?” by Cook et al. (2012), which 

commented on the ReferenceUSA’s New Businesses database. Comparatively, since the early 1970s, business 

literature has reported a wide range of data quality problems and many of these problems have been 

systematically tested with statistical methods. Business librarians can greatly benefit from these studies. But the 

sparse coverage of business literature on databases and data quality problems makes it difficult to gain a 

holistic perspective. This article makes the first effort to provide a literature review and synthetic analysis over 

nearly a half-century of business research, trying to identify the general data quality problems. Hopefully, this 

research will help business librarians understand data quality problems more thoroughly and further inspire 

discussions on the role that librarians can play in improving data quality and safeguarding research integrity 

and public trust in business knowledge.    

 

Research Questions 

 

This article reviews a collection of the business literature that provides a critical analysis of the data quality of 

the most frequently used business and finance databases including the Center for Research in Security Prices 

(CRSP), Compustat, S&P Capital IQ, I/B/E/S, Datastream, Worldscope, Securities Data Company (SDC) 

Platinum, and Bureau Van Dijk (BvD) Orbis. This article attempts to find answers to the following questions: 

a) what are the most common data quality problems?  

b) how prevalent are these problems?  

c) how are these problems identified?  

d) what causes these problems?  

e) what are the consequences of these problems? and  

f) how to potentially solve these problems? 

 

Methodology 

 

In order to identify the articles that provide critical analysis on the data quality of the most frequently used 

business and finance databases, we searched the titles of these databases in Business Source Complete, Web of 

Science, and Google Scholar.2 The specific search terms and the number of articles retrieved are listed in Table 

1.3 Most of the articles covered in this study were retrieved from Google Scholar.4 A recent informetric study 

                                                
2 This search assumes that every article providing a critical analysis on a specific business database would mention the name of the 
database in its index, probably in the article title, abstract, or keywords. It also assumes that the more frequently the name of the 
database appears in an article, the more likely the article offers a discussion on the data quality of the database.  
3 Different search terms have different effects on the precision of the search results. “Compustat” and “I/B/E/S” as search terms 
are very effective in retrieving the relevant articles that mention these databases. Comparatively, “CRSP” and “Datastream” are less 
effective and retrieved many results in other areas. In these cases, we combined the database title with other search terms including 
“data”, “database” or the publisher to increase the precision of the search results. 
4 Although Google Scholar doesn’t disclose their search algorithm, our searches found that in some instances, Google Scholar may 
be able to search the full-text of an article and its “relevance” ranking criterion considers this factor. In Google Scholar, an article is 

https://www.powerthesaurus.org/thoroughly/synonyms
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on the major index services, which investigated over two million citations to over two thousand highly-cited 

documents, showed that Google Scholar consistently found the largest percentage of the citations across all 

areas (93%–96%), far ahead of Scopus (35%–77%) and Web of Science (27%–73%) (Martín-Martín et al., 

2018). As Table 1 indicated, our searches confirmed this finding. Besides the highly-cited journal articles, 

Google scholar searches also retrieved more working papers, conference papers, dissertations, book chapters, 

and unpublished manuscripts than Business Source Complete and Web of Science. Since the discussion on 

data quality is often a byproduct of empirical research, many researchers choose to disclose the data quality 

issues in the forms of working papers, technical notes, manuscripts, or worksheets. Google scholar better 

meets the research needs to discover this grey literature.  
 

TABLE 1: Search Terms and the Number of Articles Retrieved for Each Search Term 

Reviewed 
Database 

Business 
Source 
Complete  
(Title Search) 

Business Source 
Complete  
(Index Search) 

Business Source 
Complete  
(Full-text search) 

Web of Science Core Collection 
Index (Advanced Search in title, 
abstract and author keywords) 

Google Scholar  
(Title Search) 

Google Scholar 
(Basic Search) 

Search Terms (Number of Articles Retrieved) 

CRSP 

CRSP (13) 
"Center for 
Research in 
Security 
Price" (0) 

CRSP (173) 
"CRSP data" 
(15) 
"CRSP 
database" (13) 
"Center for 
Research in 
Security Price" 
(0) 

CRSP (9,813) 
"CRSP data" 
(1,260) 
"CRSP database" 
(1,576) 
"Center for Research 
in Security Price" 
(31) 

 TI=(CRSP) or AB=(CRSP) or 
AK=(CRSP) (290) 
 TI=(CRSP data) or AB=(CRSP 
data) or AK=(CRSP data) (104) 
 TI=(CRSP database) or 
AB=(CRSP database) or 
AK=(CRSP database) (34) 
 TI=(Center for Research in 
Security Price) or AB=(Center for 
Research in Security Price) or 
AK=(Center for Research in 
Security Price) (97) 

allintitle:"CRSP" 
(399) 

"CRSP" (79,100) 
"CRSP data" 
(8,860) 
"CRSP database" 
(11,300) 
"Center for 
Research in 
Security Price" 
(237) 

Compustat 
Compustat 
(18) 

Compustat 
(457) Compustat (11,842) 

TI=(Compustat) or 
AB=(Compustat) or 
AK=(Compustat) (377) 

allintitle:"Compus
tat" (55) 

"Compustat" 
(71,000) 

Capital IQ 
"Capital IQ" 
(2) 

"Capital IQ" 
(29) "Capital IQ" (458) 

TI=(Capital IQ) or AB=(Capital 
IQ) or AK=(Capital IQ) (100) 

allintitle:"Capital 
IQ" (8) 

"Capital IQ" 
(6,680) 
S&P "Capital IQ" 
(4,200) 
Standard & Poor's 
"Capital IQ" 
(3,110) 

I/B/E/S I/B/E/S (6) I/B/E/S (82) I/B/E/S (1,495) 
TI=(I/B/E/S) or AB=(I/B/E/S) 
or AK=(I/B/E/S) (53) 

allintitle:"I/B/E/
S" (16) 

"I/B/E/S" 
(14,700) 

Datastream 
Datastream 
(6) 

Datastream 
(106) 

Datastream (7,040) 
Datastream AND 
Thomson (1,726) 

TI=(Datastream) or 
AB=(Datastream) or 
AK=(Datastream) (277) 

allintitle:"Datastre
am" (50) 

"Datastream" 
(64,800) 
"Datastream 
database" (5,510) 
"Datastream" 
AND Thomson 
(20,700) 

                                                
considered more relevant when the search term appears in the title of the article or when the search term appears in the abstract or 
the text of the article more frequently. 
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Worldscope 
Worldscope 
(0) 

Worldscope 
(18) 

Worldscope (1,126) 
Worldscope AND 
Thomson (417) 

TI=(Worldscope) or 
AB=(Worldscope) or 
AK=(Worldscope) (16) 

allintitle:"Worlds
cope" (5) 

"Worldscope" 
(9,830) 
"Worldscope 
database" (3,160) 
"Worldscope" 
AND Thomson 
(4,100) 

SDC 
Platinum 

"SDC 
Platinum" (0) 
SDC database 
(1) 

"SDC Platinum" 
(12) 
SDC database 
(18) 

"SDC Platinum" 
(747) 
"SDC database" 
(663) 
SDC Mergers and 
Acquisitions 
Database (326)  

TI=(SDC Platinum) or AB=(SDC 
Platinum) or AK=(SDC Platinum) 
(27) 
TI=(SDC Mergers and 
Acquisitions  Database) or 
AB=(SDC Mergers  and  
Acquisitions  Database) or 
AK=(SDC Mergers  and  
Acquisitions  Database) (10) 

allintitle:"SDC 
Platinum" (0) 
allintitle: SDC 
database (9) 

"SDC Platinum" 
(6,540) 
"SDC database" 
(5,140) 
"SDC Mergers and 
Acquisitions 
Database" (852) 

BvD Orbis 

BvD Orbis 
(0) 
Bureau Van 
Dijk Orbis 
(0) 

BvD Orbis (0) 
Bureau Van Dijk 
Orbis (6) 

BvD Orbis (12) 
Bureau Van Dijk 
Orbis (13) 

TI=(BvD Orbis)  or  AB=(BvD 
Orbis)  or  AK=(BvD Orbis) (3) 
TI=(Bureau Van  Dijk  Orbis)  or  
AB=(Bureau Van  Dijk  Orbis)  or  
AK=(Bureau Van  Dijk  Orbis) 
(15) 

allintitle: BvD 
Orbis (0) 
allintitle: Bureau 
Van Dijk Orbis 
(0) 

"BvD Orbis"(316) 
Bureau Van Dijk 
Orbis (519) 

 

 

Based on the initial searches, we conservatively estimated that at least 185,000 published articles mentioned 

the reviewed business and finance databases.5 To further narrow the results, we used citation tracking, keyword 

search, and skimming techniques. For citation tracking, we closely examined the references section of the 

relevant articles found from initial searches and used the “cited by” function from Google Scholar to identify 

related articles published more recently. Also, we incorporated the keywords that describe data quality 

(including accuracy, reliability, quality, integrity, trust, consistency, discrepancy, differences, error, omission, 

credibility, and evaluation) and the keywords that describe general data issues (including challenges, problems, 

issues, biases, weakness, misinformation, and disinformation) to narrow the search results. Since Google 

Scholar uses automatic stemming and doesn’t recognize truncation, the searches were mostly done with the 

noun forms. We also used adjective forms (including reliable, unreliable, accurate, inaccurate, inconsistent, 

credible, and trustworthy) to double-check the search results. Finally, we skimmed the article title and the 

abstract of roughly the first 5oo results from each search to evaluate and identify related articles and further 

read the full-text to verify the findings. 

 

Using these search methods, we repeatedly searched Google Scholar and referred to Business Source Complete 

and Web of Science from March through June 2020.  In total, 98 articles published between 1974 to 2020 

were identified and included in this study (see the summary list in Table 2 and the detailed list in Appendix 

I). The literature search indicated that CRSP and Compustat were the most frequently used databases in 

academic business research and nearly half of the publications included in this study reviewed these two 

databases. Most of the articles were published in the last 10 years in accounting and finance journals. Many of 

these articles were published as working papers and shared via the Social Science Research Network (SSRN). 

                                                
5 The calculation of this number considers the highest number of articles retrieved using one of the search terms for each database, 
except for the CRSP. Since the search term “CSRP” retrieved many irrelevant results, we used the number for the search term 
“CRSP database” instead. 
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Despite our effort in providing wide coverage of business literature, we may omit some related articles, due to 

the large volume of the publication and the fact that the data quality issues were often discussed in footnotes. 

Several databases including the Thomson Mutual Fund Holdings Dataset, VentureXpert (via Eikon or 

Thomson One), ReferenceUSA, Value Line were mentioned but didn’t become the focus of this study, so the 

review on these databases was not extensive. Several potentially related databases such as Bloomberg, Global 

Financial Data, and BvD Osiris were not covered in this study. As a business librarian, the author has 

professional knowledge for understanding data quality problems, however, the author may not fully present 

the problems and their implications described in the business literature. The next section will provide the 

literature review of data quality problems based on the 98 reviewed articles. 
 

TABLE 2 The Summary List of the Number of Articles Included in the Literature Review by Specific Databases, Periods, and 

Journals 

TABLE 2 The Summary List of the Number of Articles Included in the Literature Review by Specific Databases, Periods, and 

Journals 

 

Database: Number of Articles* Period Coverage: Number of Articles Journal Coverage: Number of Articles 

CRSP: 21 

Compustat: 28 

I/B/E/S: 6 

Datastream: 10 

Worldscope: 7 

SDC Platinum: 10 

BvD Orbis: 5 

Capital IQ: 3 

VentureXpert data (via Eikon or 

Thomson One): 3 

Thomson Mutual Fund Holdings 

Dataset: 2 

Mergent Online: 4 

ReferenceUSA: 1 

Value Line: 5 

Database from Foreign Countries: 3 

* There are10 duplicate records 

because one article reviews more than 

one database. 

1970-1979: 4 

1980-1989: 5 

1990-1999: 11 

2000-2009: 23 

2010-2019: 52 

2020 - : 3 

SSRN: 16 

The Journal of Finance: 13 

Other Working Paper: 6 

The Accounting Review: 5 

Manuscript: 5 

The Review of Financial Studies: 4 

Journal of Corporate Finance: 3 

Journal of Financial and Quantitative 

Analysis: 3 

Journal of Financial Reporting: 2 

The Financial Review: 2 

The Journal of the American Taxation 

Association: 2 

Finance Research Letters: 2 

Dissertation: 2 

Accounting Horizons: 2 

Others (single publication): 31 

 Total: 98  

 

Literature Review 

 

The literature review section is organized by database providers and then databases. This section covers the 

Center for Research in Security Prices, LLC product (i.e. CRSP), S&P Global Market Intelligence products 

(i.e. Compustat and Capital IQ), Thomson Reuters and Refinitiv products (i.e. I/B/E/S, Datastream, 

Worldscope, SDC Platinum and others), Bureau Van Dijk (BvD) product (i.e. Orbis) and other sources 

encountered during the research, including Mergent Online, Value Line and ReferenceUSA. The literature 

review generally follows the timeline of the reviewed articles. Each section offers a short introduction to the 

company and product history as a background for understanding the time frame of the reviewed articles. 
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1. The Center for Research in Security Prices LLC6 Product: CRSP 

The Center for Research in Security Prices (“CRSP”), as a part of the University of Chicago Booth School of 

Business, was established in 1960 with a grant from the Merrill Lynch, Pierce, Fenner & Smith (CRSP, LLC., 

n.d.a). With its focus to serve the academic and research communities, CRSP data is used widely by academic 

researchers in accounting, finance, economics, math, and statistics for empirical research related to stock, 

index, mutual fund, treasury, and REIT market (CRSP, LLC., n.d.b). The database is also used by the 

commercial market for backtesting and modeling calculations and by government agencies for financial and 

economic analysis (CRSP, LLC., n.d.c). CRSP provides several data products, including CRSP US Stock 

Databases, CRSP Historical Indexes, CRSP US Index History Files, CRSP US Treasury Database, CRSP 

Survivor-Bias-Free US Mutual Funds, CRSP/Ziman Real Estate Database, CRSP Cap-Based Portfolio Index 

and the CRSP/Compustat Merged Database (CRSP, LLC., n.d.b). The CRSP/Compustat Merged Database 

provides the historical matching of the CRSP market and corporate action data with Compustat fundamental 

data (CRSP LLC. 2020a).  

 

Scholars have paid attention to the data quality of CRSP for decades. Rosenberg and Houglet (1974) 

discussed the data quality problems of CRSP in the article, “Error Rates in CRSP and Compustat Data Bases 

and their Implications.” Their research compared monthly price relatives between 1963-1968 in CRSP and 

Compustat and found nearly 3% discrepancies for industrial price relatives and nearly 2.4% discrepancies for 

utility price relatives. They concluded that large errors were relatively infrequent, but data errors could lead to 

serious consequences: (1) “The few extreme price relatives can influence some properties of the sample to a 

degree out of all proportion to their small number;” (2) “large errors in the price relatives are to introduce an 

upward bias in any arithmetic index of monthly return;”(3) “the erroneous price relatives is to pollute 

statistical analyses of the individual security” (Rosenberg & Houglet, 1974, pp. 1306-1308). Beedles and 

Simkowitz (1978) followed Rosenberg and Houglet’s study and after making appropriate corrections for data 

errors, they replicated prior research regarding the return behavior of high-risk common stocks and found 

different results (Beedles & Simkowitz, 1978, pp. 290-291).  

 

Bennin (1980) updated Rosenberg and Houglet’s study. In the article, “Error rates in CRSP and Compustat: 

A second look,” Bennin compared the monthly return (including all distributions) data between 1962-1978 

in Compustat and CRSP databases and found the overall error rate was only one-third of the rate reported in 

the Rosenberg and Houglet’s study. In general, Bennin described “the cross-checking technique reveals a 

Compustat error rate of 1/1000, and a CRSP error rate of 1/10000 [on monthly return data] over the years 

1962-1978” (Bennin, 1980, p. 1271). Grinblatt et al. (1984) reported the discrepancies of the 

announcements on proposed splits and stock dividends for the years 1967-1976 between CRSP and the Wall 

Street Journal Index. Sarig and Warga (1989) compared the CRSP Government Bond Price Dataset with the 

independently collected Shearson Lehman Brothers (SLB) Bond Data. They found the discrepancies between 

the two datasets were not random and were largely due to liquidity-driven price errors. They found these 

                                                
6 On January 1, 2020, CRSP spun off from Chicago Booth and became its affiliates CRSP, LLC (CRSP LLC, 2020b). 
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discrepancies were systematically related to certain bond characteristics and proposed some filters to reduce 

the noise in price records (Sarig & Warga, 1989, p. 367). 

 

Guenther and Rosman (1994) examined the differences between SIC codes assigned to companies by 

Compustat and CRSP. They found large differences at two-, three-, and four-digit levels. They replicated a 

prior study and found using Compustat and CRSP codes yielded different results (Guenther & Rosman, 

1994). Kahle and Walkling (1996) investigated approximately 10,000 firms jointly covered by Compustat 

and CRSP from 1974 to 1993 and found substantial differences in the SIC codes designated by the two 

databases. More than 36% of the classifications disagree at the two-digit level, 50% disagree at the three-digit 

level and nearly 80% disagree at the four-digit level and “the classification of utilities, financial firms, and 

conglomerate acquisitions are affected by the choice of CRSP vs. Compustat SIC codes” (Kahle & Walkling, 

1996, P. 309). 

 

Courtenay and Keller (1994) examined the distributions (i.e. stock dividends or stock splits) reported by 

CRSP during the calendar year 1989 against the verified Moody’s Dividend Record (MDR). Among 718 

observations, they found 142 discrepancies, including “91 coding differences, 20 ex-date differences, eight 

instances of late updates, five occurrences of arithmetic errors, one case in which an option dividend was 

improperly treated as a stock dividend instead of a cash dividend, and 17 reporting differences between CRSP 

and MDR” (Courtenay & Keller, 1994, p. 287). The 91 coding differences included 13 cases where the 

CRSP coding was incorrect and 64 instances where CRSP used its coding definition that was different from 

the annual reports (Courtenay & Keller, 1994, p. 287). The researchers further concluded that “the 

probability of randomly selecting a company reporting a stock distribution improperly administered by CRSP 

in 1989 is approximately three percent” (Courtenay & Keller, 1994, p. 290). 

 

Loughran and Ritter (1995) alerted that the upward bias in the daily equally weighted index returns in CRSP 

was substantial. Canina et al. (1998) also warned researchers that compounding daily returns of the CRSP 

equal-weighted index could lead to surprisingly large biases. “The differences between the monthly returns 

compounded from the daily tapes and the monthly CRSP equal-weighted indices are almost 0.43% per 

month or 6% per year. This difference amounts to one-third of the average monthly return and is large 

enough to reverse the conclusions of a paper using the daily tape to compute the return on the benchmark 

portfolio” (Canina et al., 1998, p. 403). Yan (2007) offered a new method to “generate an unbiased CRSP 

daily equal-weighted return with dividend, which is free of the problems associated with the microstructure 

and consistent with the CRSP monthly index” (p. 1). Yan confirmed that the CRSP daily equal-weighted 

return is systemically upward biased, and the bias will “lead to a systematically undervalued intercept, which 

might make a Jensen’s alpha more positive (attractive) than it should be. For the beta, the results are mixed 

and their significant levels depend on individual stocks” (Yan, 2007, pp. 7-8). Yan further elaborated that if a 

firm has positive excess returns during the estimation period, by using an upward biased daily index, a positive 

event will be exaggerated (Yan, 2007, p. 8).  
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Shumway (1997) and Shumway and Warther (1999) cautioned researchers against the delisting bias in 

CRSP. Shumway (1997) found CRSP files were missing thousands of delisting returns. “Omitted delisting 

returns introduce a bias into studies that use the CRSP data” (Shumway, 1997, p. 328). Without delisting 

returns, “it is not possible to accurately calculate the returns to a feasible portfolio” and overlooking the 

delisting bias may result in “other unknown data biases confounding empirical results” (Shumway, 1997, pp. 

328, 340). Shumway and Warther (1999) further investigated the delisting bias in CRSP’s Nasdaq data. 

They found many delisting returns were not collected in CRSP and some categories were missed more often 

than others: “delisting returns associated with poor firm performance (e.g., bankruptcy or failure to meet 

capital requirements) are missed much more often than returns associated with neutral or good firm 

performance (e.g., merger, acquisition, or migration to another exchange)” (Shumway & Warther, 1999, p. 

2361). Tobek and Hronec (2018) found the quality of the delisting data improved since Shumway’s study 

and identified 2,742 out of 20,680 (13%) delistings in CRSP were missing as of 2017 (Tobek & Hronec, 

2018, p. 12). 

 

Elton et al. (2001) examined the accuracy of the CRSP Survivor-Bias-Free US Mutual Fund Database and 

identified the omission bias in the database. They pointed out that “although all mutual funds are listed in 

CRSP, return data is missing for many and the characteristics of these funds differ from the populations” 

(Elton et al., 2001, p. 2415). Thus, even though the CRSP database “does not have traditional survivorship 

bias, it does have a form of survivorship bias called omission bias that causes the same type of problems as 

does traditional survivorship bias” (Elton et al., 2001, p. 2416). They also identified the upward bias in 

CRSP’s monthly returns: “the returns in the CRSP database are upward biased in any month where there are 

multiple distributions on the same day” (Elton et al., 2001, p. 2416). They analyzed the accuracy of CRSP’s 

merger data and found “the CRSP data on merger dates are inaccurate enough to require that all merger dates 

be independently validated” (Elton et al., 2001, p. 2425). Finally, they compared CRSP with the Morningstar 

database and found serious differences in alpha and returns, particularly for older data and small funds (Elton 

et al., 2001, p. 2429).   

 

Wisen (2002) found the CRSP Survivor-Bias-Free US Mutual Fund Database is not bias-free and it has 

another type of selection bias called incubation bias. “Incubation causes a selection bias when new funds with 

poor performance are not added to databases as promptly as new funds with superior performance are added 

to databases” (Wisen, 2002, p. 3). Wisen explained, “incubation bias differs from the more widely studied 

problem of survivorship bias because incubation bias is due to a systematic exclusion of some new funds from 

databases, whereas survivorship bias is caused by the removal of terminated funds from databases” (Wisen, 

2002, p. 3). Wisen also argued that the practice of CRSP in excluding the returns of new funds with less than 

$15 million in assets created a subtle form of survivorship bias (Wisen, 2002, p. 7). Their research found 

“approximately one-third of the terminated funds in [their] study were missing their initial returns in CRSP” 

and on average the first 15 months of returns were not recorded for these funds (Wisen, 2002, p. 8).  

 

In terms of incubation bias in CRSP, Evans (2007) documented that “for a sample of domestic equity funds, 

39.4% of funds are incubated and the incubation bias is estimated to be 4.7% in raw returns and between 
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1.9% and 3.3%, risk-adjusted” (p. 1). Evans (2010) further documented both public incubation bias and 

private incubation bias in CRSP. CRSP (2020c) admits the existence of duplication bias and selection bias in 

their data in the Mutual Fund Data User Guide. It mentions, “the returns histories are sometimes duplicated 

in the database. For example, if a fund started in 1962 and split into four share classes in 1993, each new 

share class of the fund is permitted to inherit the entire return/performance history. This can create a bias 

when averaging returns across mutual funds”; and “a selection bias favoring the historical data files of the best 

past performing private funds that became public does exist” (CRSP LLC., 2020c, p. 4). Jorion and Schwarz 

(2017) explained the backfill bias (or ‘instant-history’ bias) associated with incubation: “the backfill bias 

arises when the fund’s performance is not made public during some incubation period but then is added to the 

database presumably following the good performance (p. 1). They believed that the listing decision generated 

a bias because the fund manager’s decision to include the fund or not was most likely correlated with past 

performance (Jorion & Schwarz, 2017).  

 

Schwarz and Potter (2016) discovered that CRSP and the Thomson Mutual Fund Database contained many 

voluntarily reported mutual fund portfolios, however, the two databases were missing many mandated 

portfolios that were available in the SEC filings (p. 3520). Their research also found that CRSP portfolios’ 

positions before the fourth quarter of 2007 were inaccurate when the data were acquired from Morningstar, 

and during this period, “one in five CRSP fund portfolios has 25% or more of their positions reported 

inaccurately” (Schwarz & Potter, 2016, p. 3520). Schwarz and Potter didn’t suggest researchers using the 

CRSP portfolio data before the fourth quarter of 2007 (Schwarz & Potter, 2016, pp. 3521-3522).  

 

Francis et al. (2016) pointed out that “despite the precision of CRSP data, researchers may inadvertently 

generate imprecise measurements when modifying and adjusting CRSP variables” (p. 13). They reminded 

researchers that “stand-alone share prices adjusted with CRSP adjustment factors are inaccurate in the 

presence of property dividend, spin-off and rights offering events” and “ignoring covertly missing stock 

returns may create misleading test results” (Francis et al., 2016, p. 2). 

 

2. S&P Global Market Intelligence Products 

 

1) Compustat 

 

Compustat, developed by Standards & Poor’s (S&P) around 1964, was one of the earliest services that 

collected data on public companies (New Research Center, 1965). After S&P acquired Capital IQ in 2004, 

some portion of Compustat’s fundamental data was available via the S&P Capital IQ platform (Zuckerman, 

2004).  Compustat is introduced by S&P as a comprehensive dataset with standardized, historical, and point-

in-time data (S&P Global Market Intelligence, 2017). Besides time-series fundamental data, the company 

believes what differentiates Compustat from its competitors is their extensive research of management 

discussion, footnotes, and analysis of detailed supplemental data items such as historical industry 

classifications, segment data (including operating and geographic segment, customer and product data), debt, 

options, pension, and industry-specific data (S&P Global Market Intelligence, 2017). Compustat is the most 
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frequently used database for business and financial empirical research. Consequently, its data quality problems 

are widely noticed and discussed by academic researchers.  

 

San Miguel (1977) compared the Research and Development (R&D) expense data in Compustat with the 

original data in the 10-K reports. For the sample data of 256 firms in 1972 retrieved from Compustat, they 

found 78 (30%) differences, most of which resulted from the incorrect inclusion of contract research into 

R&D expenses (San Miguel, 1977. P. 640). They notified Compustat about their findings and the company 

reviewed the data and found approximately 125 companies had the same data problem (San Miguel, 1977, p. 

639).  

 

Ball and Watts (1979) questioned the process that Compustat used to construct their data files and provided 

additional evidence of survival biases in Compustat. They argued that the data files in Compustat were 

constructed retrospectively to meet security analysts’ interest and researchers “ended up analyzing data on an 

unrepresentative sample of firms, with a lower-than-average expected frequency of earnings decline” (Ball & 

Watts, 1979, p. 197).  McElreath and Wiggins (1984) captured four types of data problems regarding 

Compustat data files, including (a) incorrect data; (b) inconsistent use of definitions, which created 

comparability problems; (c) survivorship bias; and (d) potential timing problems relating to whether the data 

were available to the public at the time a study assumed they are (McElreath & Wiggins, 1984, p. 71). The 

research proposed some solutions to tackle data problems, including using statistical methods and dataset 

comparison to detect data errors (McElreath & Wiggins, 1984, p. 73).  

 

Banz and Breen (1986) examined the effect of the ex-post-selection bias and the look-ahead bias in the 

Compustat datasets. They noticed that biases in business databases had been long aware of by empirical 

researchers; however, since there had been no practical way of measuring the size of the biases introduced, 

some studies had ignored the problems, others had used various measures designed to reduce the biases, while 

some had claimed that the biases are of a negligible magnitude (Banz & Breen, 1986, p. 780). After comparing 

the results from the standard Compustat data with those from a bias-free dataset they collected over the years, 

they found that the portfolio rates of return from two datasets differed significantly and could result in 

different conclusions in hypothesis testing (Banz & Breen, 1986, p. 779). Kinney and Swanson (1993) 

evaluated 19 tax field data in Compustat and discovered that the “error rate varies widely,” and “it is generally 

higher for items reported in the footnotes than for items reported on the income statement and balance sheet” 

(p. 121).  

 

Several studies found significant discrepancies between Compustat and other databases. Kern and Morris 

(1994) compared Compustat with the expanded Value Line databases and found significant differences in 

commonly used financial data items such as sales and total assets. They also found the differences in the two 

databases can materially affect inferences about the population of firms and the outcomes of empirical 

research (Kern & Morris, 1994, pp. 274, 284). They noticed that the differences were primarily attributed to 

the differences in “data assimilation policies concerning mergers and acquisitions, accounting changes, and 

discontinued operation” (Kern & Morris, 1994, p. 275). Yang et al. (2003) examined the accuracy of seven 
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frequently used accounting variables in Compustat and Value Line databases and found “substantial data 

differences,” resulting from definitional discrepancies and direct measurement error (p. 1). Ulbricht and 

Weiner (2005) examined more than 650 data items from 1985 to 2003 for the US and partly Canadian 

firms in Worldscope and Compustat. They found the two databases could lead to comparable results, but “if 

e.g. a size bias is not treated with care, the quality of results may differ [considerably]” (Ulbricht & Weiner, 

2005, p. 1). Tallapally (2009) showed that different bond rating models responded differently to the choices 

of Compustat versus Mergent data. 

 

Several studies disclosed that researchers improperly used Compustat data as proxies. Mills et al. (2003) 

warned researchers to take extra care when using Compustat net operating loss data as an indicator of a firm’s 

US tax-loss positions, particularly when the research involves firms with foreign operations or acquisitions 

activity. Ali et al. (2008) criticized the industry concentration measures calculated with Compustat data. They 

pointed out that because Compustat only covers public firms in an industry, “they are poor proxies for actual 

industry concentration” and “these measures have correlations of only 13% with the corresponding US 

Census measures, which are based on all public and private firms in an industry” (Ali et al., 2008, p. 3839). 

These measures could lead to incorrect research conclusions (Ali et al., 2008, pp. 3843). Keil (2017) 

reiterated this problem and mentioned that popular approximations of the Herfindahl Index based on 

Compustat dataset “have a vanishingly low correlation with the more comprehensive Census measure” and 

consequently, major financial variables of interest show different correlations with these concentration 

indicators, which can “lead to a breakdown of regression results” (Keil, 2017, p. 467). Banyi et al. (2008) 

questioned earlier studies that used the data from Compustat and CRSP as proxies to estimate the number of 

shares repurchased.  

 

Shi and Zhang (2011) found the differences between the two measures of accruals (one uses a balance sheet; 

the other uses a cash flow statement) calculated with Compustat data. They elaborated that the “non-

articulation in working capital accounts and depreciation expenses between the cash flow statement and other 

financial statements is surprisingly prevalent and economically significant, and it can be attributed to special 

events, errors made by Compustat, firms’ inconsistent definitions, and nonstandard classifications of assets and 

liabilities” (Shi & Zhang, 2011, p. 811). 

 

Since the mandatory requirement for all public US GAAP companies to file their financial reports using the 

XBRL (eXtensible Business Reporting Language) effective on June 15, 2011,7 more studies have been 

conducted to compare Compustat’s data with 10-K filings and sometimes at a large scale. Boritz and No 

(2013) retrieved the XBRL-tagged interactive data from SEC’s EDGAR for a sample of 150 XBRL filings of 

75 firms for the period 2009-2011 and compared the data with the corresponding data in Compustat. They 

found that 6279 (44.3%) financial facts in Compustat matched with the interactive data, 677 (4.8%) 

financial facts did not match and Compustat had 7,207 (50.9%) omissions (Boritz & No, 2013, p. 38). In a 

                                                
7 On June 28, 2018, the SEC adopted the amendments that require the use, on a phased in basis, of Inline XBRL for operating 
company financial statement information and fund risk/return summary information. See more at 
https://www.sec.gov/structureddata/osd-inline-xbrl.html 

https://www.sec.gov/structureddata/osd-inline-xbrl.html
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relatively small-scale study, Tallapally et al. (2011) compared EDGAR (normalized data) with Compustat 

(standardized data) of the “cost of goods sold” item for 26 manufacturing companies included in DOW 30 

companies for the fiscal year 2009.  Out of the 26 companies compared, only one company’s “cost of goods 

sold” data matched between Compustat and EDGAR. Comparatively, another study by the researcher 

compared differences in sales (or revenues) of 27 non-financial companies included in the DOW 30 between 

Compustat and EDGAR. Seven discrepancies among the 27 companies were observed (Tallapally et al., 

2012). Chychyla and Kogan (2014) leveraged XBRL to automatically extract thousands of 10-K numbers to 

create a data sample and investigate the effects of Compustat's standardized data (via Capital IQ) versus 

original 10-K data on bankruptcy prediction models. They concluded that “Compustat's data standardization 

not only yields no improvements for bankruptcy prediction models but also has a significant (up to 8.56%) 

negative impact on the predictive accuracy of Altman's model” (Chychyla & Kogan, 2014, p. 1).  

 

Chychyla and Kogan (2015) extended the research from Boritz and No and conducted the first large-scale 

study over the Compustat North America Fundamentals Annual Filings data and the 10-K data by comparing 

30 accounting variables for approximately 5,000 companies from 2011 to 2012. The research showed that 

the values of 17 out of 30 analyzed variables in Compustat significantly differ from the values reported in the 

10-K filings. The researchers found that the discrepancies were more likely to occur to complex financial 

concepts such as “cost of goods sold” or “gross profit” as opposed to simple concepts such as “total assets,” 

“total liabilities,” or “net income” (Chychyla & Kogan, 2015, p. 70). They summarized four reasons for the 

differences, including standardization, erroneous data due to typos or rounding, not-up-to-date data due to 

restatements, and missing data (Chychyla & Kogan, 2015, p. 43). Bratten et al. (2016) also contributed to this 

discussion and estimated that “Compustat data error entry rate of 13 percent” overall for footnote entries and 

believed that “this is likely due to the difficulty of collecting detailed data from non-standard financial 

statement footnote disclosures” (Bratten et al., 2016, p. 40).  

 

Williams (2015) explored the usefulness of the XBRL company fillings in his doctoral dissertation. 

Williams’s research found that the original data from XBRL filings cannot be used to create earning 

prediction models, due to a large number of missing values; but using the functionality directly built into 

XBRL taxonomy, the fully populated XBRL company filings can be used to create earning predictions. 

Williams tested two earning prediction models using populated XBRL data and Compustat. The test found 

in one prediction model, “fully populated XBRL company filings predicted future earnings with a higher level 

of accuracy than Compustat did” and for the other model, there was no significant difference between the two 

datasets (Williams, 2015, pp. 89-90).  

 

McGuire et al. (2016) described the concept of “database effect” as they compared the data from Compustat 

Global, Osiris, and Worldscope. Using multiple statistical estimation techniques and replication studies, they 

confirmed that “researchers would likely come to a different conclusion based on the database used” 

(McGuire et al., 2016, p. 186). Although each database claimed to be relatively comprehensive in terms of 

global firm coverage, the actual coverage was far from identical. The researchers believed that “country-

specific differences in firm and country coverage may lead to biased conclusions, and inconsistent yearly 
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samples may pose challenges for researchers using panel data” (McGuire et al., 2016, p. 187). The database 

effect was also examined in an earlier study by Lara et al. (2006), who compared seven widely used databases 

for international accounting research and concluded that the database choice can affect the results and findings 

of international accounting research (p. 449).  

 

Casey et al. (2016) disclosed the prevalence of missing values and data errors in Compustat. They proposed a 
Modified Financial Statement Balancing Model to solve the problems of missing values or erroneous entries 
and restore them into usable data points such as zeros or summary amounts. Using Compustat data of US 
nonfinancial firms for 1988-2011, their model identified 560,684 (30%) exceptions out of 1,847,444 firm-
year equation observations. They followed a three-step process to resolve the exceptions: 1) replacing null 
variable values with zero when applicable, 2) replacing zero or missing values in total assets, total liabilities, 
total current assets, and total current liabilities with the sum of their respective components, and 3) making 
changes based on generally accepted accounting principles (Casey et al., 2016, p. 38). Hribar (2016) generally 
believed that this approach is “sensible” and the formalized procedure is a “logical approach to deal with the 
fact that the missing value could be zero or non-zero” (p. 63). Casey et al. (2019) further discussed this issue 
in the article “Measuring Reporting Quality.” 
 

Bostwick et al. (2016) questioned the standardization and the adjustment process of Compustat in treating 

depreciation, depletion, and amortization allocated to the “cost of goods sold” variable. Using a sample of 

10,758 firm-years across all industries from 2008–2011, they found that Compustat “cost of goods sold” 

understates the 10-K “cost of goods sold” by an average of 7.5%. Since the Compustat “gross margin” is 

computed using the “cost of goods sold” variable, it results in the overstatement of the Compustat “gross 

margin” by 14.3% (Bostwick et al., 2016, p. 191). They communicated such issues with Compustat and 

offered some treatments for researchers to reconcile the differences (Bostwick et al., 2016). 

 

Utke (2018) disclosed the miscoding of Compustat’s auditor variables and explained that the miscoding in 

the auditor variable can “affect studies of Big N effects, industry specialization, auditor tenure, and auditor 

changes, among others” (p. 57). Utke found that many miscodings resulted from an auditor change - 

“following an auditor change, the previous auditor's report remains in a firm's 10-K, and Compustat 

occasionally codes the previous auditor as the current auditor” (Utke, 2018, p. 56). The study identified 230 

(0.35%) miscodings out of the 66,365 observations (Utke, 2018, p. 57).  

 

Heitzman and Lester (2020) quantified the coverage and measurement errors of the “net operating loss” 

variable in Compustat. They found that Compustat failed to identify the existence of “net operating loss” in 

25% of large firms and for firms that Compustat correctly identified a tax loss, it significantly understated the 

balance of the loss. They also pointed out that “Compustat does not distinguish the cash tax value of losses 

generated across differing jurisdictions, treating one dollar of state tax loss the same as that of federal or 

foreign losses” (Heitzman & Lester, 2020, p. 2).  

 

2) S&P Capital IQ 
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The Capital IQ platform was founded in 1998 by two investment bankers and was commercially launched in 

2000. The platform provided information on public and private companies, private capital firms, transactions, 

and executives. It was acquired by the Standard & Poor's in 2004. The acquisition extended its content to 

covering “fixed income, equities, indices, and mutual funds as well as select portions of fundamental data from 

the Compustat unit” (Zuckerman, 2004). Since 2007, S&P Capital IQ updated its platform with debt and 

credit data, which provided the information about capital structure of public companies including senior and 

subordinated debt, secured debt, commercial paper, and bank facilities as well as fixed payment schedules and 

credit ratios (Heires, 2007). The product was originally designed to provide services for the investment 

banking community, but it gradually entered the academic market (Phillips, 2012). 

 

The Capital IQ’s debt structure and credit lines data are widely used by researchers (Kahle & Stulz, 2013; 

Acharya et al., 2014; Mathers & Giacomini, 2016; Chang & Shim, 2017; Choi et al., 2018). Acharya et al. 

(2014) utilized the information on the drawn and undrawn lines of credit from Capital IQ to conduct 

empirical tests and justified the “credit lines as monitored liquidity insurance” theory. Choi et al. (2018) used 

corporate debt structure data such as bonds, notes, and maturities for loans (revolving credit and term loans) 

from Capital IQ to analyze corporate debt maturity profiles. Kahle and Stulz (2013) relied on the 

information of bank loans and revolvers to create a sample of small, bank-dependent firms. The competitor 

data from Capital IQ is also mentioned frequently in business literature. Rauh and Sufi (2012) drew the 

competitor data from Capital IQ to study the corporate capital structure. Benedettini et al. (2013) used 

Capital IQ to compile a broad set of potential competitors. Röhm et al. (2019) referred to the business 

descriptions and corporate tree function in the database to identify investor’s parent companies. The credit 

rating, executive remuneration data, stock listing, and management forecast data in Capital IQ are also used by 

researchers (Dhaliwal et al., 2014; Silva, 2017).  

 

Despite the wide use of Capital IQ, only a small number of articles investigated its data quality. In a research 

note on Capital IQ’s credit line data, Mathers and Giacomini (2016) compared Capital IQ’s data with 

carefully hand-collected data and found Capital IQ often reported missing values when there was data 

available on credit line in the company’s 10-K filings. As described in the article, three prior research found 

85%, 79%, and 85% of sampled firms have a credit line respectively; however, only 18.9% of the sample 

drawn from Capital IQ had credit line data (Mathers & Giacomini, 2016, p. 440). As they explained, the 

disparity between Capital IQ credit line data and hand-collected data were significant. Due to the missing 

values, only 27.3 % of Capital IQ’s reported “drawn amount outstanding” and 8.9% of Capital IQ’s reported 

“undrawn revolving credit” exactly matched the hand-collected observations (Mathers & Giacomini, 2016, p. 

441). If not counting the missing values, the percentage of matches for drawn and undrawn credit was 43.2% 

and 38.7% respectively (Mathers & Giacomini, 2016, P. 441).  

 

Lee (2017) compared the outstanding debt data in Compustat with the same data in Capital IQ. The research 

found Capital IQ had a significant number of missing values: “about 51% of these samples (32,356 firm-year 

observations) have missing values in total term loans, 95% of commercial paper outstanding is missing, 81.4% 
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of subordinated debt is missing, and 77.2% of convertible debt information is missing, which makes it harder 

to analyze a firm’s debt structure using the Capital IQ database” (p. 40). 

 

Benedettini et al. (2013) studied a set of potential competitors and mentioned that Capital IQ provided more 

relevant competitor information than several other databases including Mergent Online, Hoovers, and Factiva. 

They attributed it to the fact that Capital IQ acquired the competitor’s information from the SEC filings, 

press releases, and direct company contacts, while the other databases identified the competitors by industry 

categories and locations. They also mentioned that even though Thomson ONE Banker and Bloomberg 

databases also provided relevant competitor information, only a small number of the firms in their bankruptcy 

sample (12 and 14 respectively) were covered by these two databases. Comparatively, 54 of the 75 target firms 

were found in Capital IQ (Benedettini et al., 2013). 

 

Mathers and Giacomini (2016) also cautioned researchers to notice the fiscal year coding difference between 

Capital IQ and Compustat. Since Capital IQ is often used together with Compustat, it is crucial to aware that 

“Capital IQ’s fiscal year reporting doesn’t match Compustat when comparing the firms with a fiscal year-end 

month prior to June. For example, for a firm with its fiscal year-end date of March 2003, Capital IQ reports 

the data as the fiscal year 2003 while Compustat reports it as the fiscal year 2002” (Mathers & Giacomini, 

2016, p. 437).  In the sample collected by the researchers, 9% of firms were found mismatched due to these 

differences in the coding of the fiscal year (Mathers & Giacomini, 2016, p. 437). 

 

3. Thomson Reuters-Refinitiv Products 

 

A series of data products from Thomson Reuters and Refinitiv were widely used by academic researchers. In 

the last 15 years, the company has gone through phases of acquisition, reorganization, and alliances.8 Despite 

the company’s structural changes over time, their legacy products are enduring.  

 

1) I/B/E/S 

The Institutional Brokers Estimate System (I/B/E/S) was firstly founded by a New York brokerage firm and 

began collecting earnings estimates for US companies around 1976. Through several transactions, the 

company was sold to Primark in 1995 (Bloomberg Business News, 1995). In 2000, Thomson Financial 

acquired Primark (Collings, 2000) and I/B/E/S became one of its major modules in Thomson One 

Investment Management products (Thomson Reuters, 2006). This system compiles the forecasted earnings 

and analysis of publicly traded companies and is recognized as one of the important security and portfolio 

analytical tools.  

 

                                                
8 Thomson Corporation acquired Reuters during 2007-2008 and formed Thomson Reuters. Thomson Financial Services Inc, was 
combined with Reuters to create the Markets Division, which later became Financial & Risk Division under company’s restructuring 
during 2011-2012 (Thomson Reuters, 2008, 2011, 2012). In 2017- 2018, Thomson Reuters sold 55% of its Financial & Risk 
business to private equity funds managed by Blackstone and retained a 45% interest in the new company, which is now known as 
Refinitiv (Thomson Reuters, 2018, 2019). The London Stock Exchange committed its takeover of Refinitiv and expects to 
complete the deal by early 2021 (Jones, 2020; CNBC, 2020).  
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The I/B/E/S historical earnings forecast data and services are used widely by academic researchers to validate 
their investment theories and observations. Concerns over the I/B/E/S data have been documented by many 
researchers. Payne and Thomas (2003) found that “[I/B/E/S] adjusting for stock splits and rounding to the 
nearest penny can cause a loss of information” and using the actual (unadjusted) earnings and forecast data 
from I/B/E/S can overturn prior research results based on split-adjusted data (p. 1049). They also pointed 
out that because “researchers are prohibited in many cases from determining the amounts actually reported in 
prior years, leading to misclassified observations” (Payne & Thomas, 2003, p. 1049). Roger (2017) 
investigated analysts’ earnings forecasts of UK companies and revealed that over 10% of the analyst codes in 
the database were subject to reporting errors. These reporting errors affected the evaluation of analysts’ 
characteristics and could bias empirical studies that rely on tracking analysts (Roger, 2017). 
 

In the article “Rewriting History,” Ljungqvist et al. (2008) documented widespread ex-post changes to the 

historical contents of the I/B/E/S analyst stock recommendations. Across a sequence of seven downloads 

between 2000 and 2007, they found that between 6,594 (1.6%) and 97,579 (21.7%) of matched 

observations were different from one download to the next. They found the changes including the alterations 

of recommendation levels, the additions and deletions of records, and the removal of analyst names were non-

random. The findings attracted public attention as the Financial Times disclosed the issue and raised the 

question about the integrity of the database (Brown-Humes, 2006; FT Alphaville, 2007). The database 

provider partly addressed the concerns and responded: “the names of the individual analysts remain in the 

database. However, they were not visible on the files seen by the academics due to an incomplete data feed;”… 

and “[the company is] working to rectify the problem with feeds” (Brown-Humes, 2006). 

 

Acker and Duck (2009) added to Ljungqvist’s research and reported the concerns over the I/B/E/S and 

Worldscope data on final earnings announcement dates of UK companies retrieved from the Thomson ONE 

Banker Package. They identified three major problems: (1) “year-end earnings announcement dates were 

frequently misreported in the I/B/E/S database.” Compared with 1,874 of hand-collected data, 24% of the 

I/B/E/S data were incorrect, 97% of which was later than the true date (Acker & Duck, 2009, P. 4); (2) 

There are about 22% discrepancies between the announcement dates reported in I/B/E/S and those reported 

in Worldscope; and (3) “When the I/B/E/S announcement date is later than the true report date, it is 

possible for the forecasts also to be dated after the true report date. Analysts can, therefore, appear to be 

forecasting earnings per share after the actual figure has been made public” (Acker & Duck, 2009, p. 5). As 

they believed, such inaccuracies can in many ways distort the results of related studies. They communicated 

such problems with the I/B/E/S and made the vendor to review approximately 2 million records in the 

I/B/E/S database and identified 50,000 errors in European announcement dates. The data provider also 

initiated a project to review the data for US firms (Acker & Duck, 2009, p. 6).  

 

Brown and Larocque (2011, 2013) examined the prevalence and the consequences of data discrepancy 

between the I/B/E/S actual earnings-per-share data (EPS) and the analysts’ inferred EPS. They found that 

the I/B/E/S actual EPS differs from the analyst’s inferred actual EPS 39% of the time. Thus, the data 

discrepancy is prevalent in the I/B/E/S earnings database. They also found the data discrepancy was 

systematic and associated with analyst, firm, industry, and year. They stressed four adverse consequences of the 

data discrepancy: “(1) less accurate earnings forecasts by analysts; (2) smaller forecast revision coefficients by 
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analysts; (3) more disperse earnings forecasts among analysts following a firm; and (4) lower market reactions 

to firms’ I/B/E/S-based earnings surprises” (Brown & Larocque, 2011, p. 26). They also found that the 

discrepancy would affect the result of prior research (Brown & Larocque, 2011). 

 

Call et al. (2020) compared annual earnings forecasts across two versions of the I/B/E/S detail files, one 

made available in 2009 and the other made available in 2015. They found “substantial differences in the 

contents of these two versions of the detail files, as well as significant differences in the attributes of the 

earnings forecasts available in each version” (Call et al., 2020, “abstract”). The researchers concluded that 

“differences related to earnings forecasts continue to occur, with potential long-term implications for 

researchers” (Call et al., 2020, p. 5). In private conversations with the researchers, Thomson Reuters provided 

some explanation for the changes, which included retroactive adjustments for stock splits or stock dividends, 

“default currency” adjustments, and correction of errors. The vendor also disclosed that some differences 

occurred because the brokerage maintained control over the distribution of these forecasts and academic 

subscribers often had access to only a subset of all the earnings forecasts. Despite the explanations, the lack of 

transparency concerned researchers, and the inconsistency of the data sources greatly affected the researcher’s 

practices in empirical research (Call et al., 2020, pp. 6-8). 

 

2) Datastream  

Datastream was developed by the Hoare & Co in 1967. Through a series of acquisitions, the company was 

sold to Dun & Bradstreet in 1984. In 1992, Datastream was acquired by Primark, which was later sold to 

Thomson Financial in 2000 (Derasse, 2017). Datastream, as a global financial and macroeconomic data 

platform, provides data on equities, stock market indices, currencies, company fundamentals, fixed income 

securities, economic profiles, and key economic indicators for the majority of the countries in the world. 

I/B/E/S is also available through Datastream (Refinitiv, 2019). The database is used widely for top-down 

macro analysis, financial analysis, sector research, and asset allocation strategy research (Derasse, 2017).  The 

database is recognized for its broad market coverage and long historic market data and is used widely to 

conduct time-series and cross-country studies (Brückner, 2013).  

 

Bloom et al. (2004) released a technical note on using company accounts data from Datastream. The article 

pointed out that due to mistakes and inconsistencies, the cleaning procedure is necessary when using the 

database. The problems ranged from “simple typographical errors to more complicated issues such as breaks 

in company time series due to mergers,” and “if the data are not cleaned, then outliers can have a strong 

influence on any subsequent regression results” (Bloom et al., 2004, p.7). 

 

Ince and Porter (2006) reviewed the individual equity return data from Datastream and warned researchers to 
“handle with care!” As they described, the most troubling finding was “the inability to distinguish easily 
between the various types of securities traded on equity exchanges” (Ince & Porter, 2006, p. 464). For 
instance, many securities classified as common stocks are not such. Besides, “the full-time series of exchange 
classification variables often reflected only the most current value,” so delisted securities would not have a 
track record of prior exchanges (Ince & Porter, 2006, p. 464). The classification errors induced a survivorship 
bias which implied that delisted firms were less likely to be included in a Datastream sample (Ince & Porter, 
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2006, p. 474). They also identified several issues related to calculating total returns using return variables. 
They questioned some of the technical practices from the database: “rounding prices to the nearest penny can 
cause nontrivial differences in the calculated returns when prices are small” and “the return index is reported 
to the nearest tenth; therefore, when the level is very small, the rounding of large absolute price level changes 
can have a significant effect” (Ince & Porter, 2006, p. 473).  Also, they found many instances of data errors 
including stock splits reflected on incorrect dates. When comparing the database with CRSP, the researchers 
found differences in coverage and discrepancies in closing prices and dividend observations (Ince & Porter, 
2006, p. 472). 
 

A series of studies between 2007-2011 revealed several problems of the Datastream data for the UK market. 

Researchers continued to discover survivorship bias in Datastream especially for foreign stocks listed in the 

UK and small stocks on the deadstock file of the database (Andrikopoulos et al., 2007).  Andrikopoulos et al. 

(2007) mentioned that the biggest problem of using Datastream is “the vast inclusion of non-ordinary items 

in the equities section of the database; the appearance of more than one record for certain ordinary stocks and 

the inability to provide an accurate static mirror image of the UK equities market at any given point in time as 

it doesn’t provide accurate listing and de-listing information” (p. 17). Espenlaub et al. (2009) reported “a 

fundamental error in Datastream equity data for share prices and return indices relating to a failure to make 

any capital adjustments for UK open offers before February 2002” (p. 61). Rossi (2011) seriously criticized 

the deficiencies of Datastream - “the data is so bad and flawed that statistical inferences driven without a 

thorough review and correction exercise are, at best, totally unreliable” (p. 3). According to Rossi (2011), the 

situation of incorrect share information was very common and the database often failed to correctly account 

for the effect of stock splits, which affected market cap and turnover calculations (p. 14). Rossi described two 

troubling lessons: one was that “within the Datastream sample, it is not possible to determine in a recursive, 

rule-based manner, which constituents must be retained and which should not,” and due to incorrect static 

classification, the researcher excluded nearly 25% of constituents from the sample; the other lesson was that 

more than 50% of the already filtered sample had to be excluded due to incorrect historical data on prices, 

shares, returns, and volume (pp. 17-18). Rossi found that the problem not only happened to small stocks but 

also to large and mega-caps, especially for shares and volume data (p. 18). So, Rossi reminded researchers to 

be aware of data problems, both “when planning a cross-sectional analysis” and “when reading results drawn 

from samples that have not been treated accordingly” (p. 18). 

 

Brückner (2013) examined the equity data from Datastream to evaluate whether the database can be used as 

the primary data source for a German stock market study. Brückner found the coverage of the database was 

insufficient for equity research before 1990 and the errors in total return indices were “mainly caused by price 

differences and incorrect adjustments for dividends and corporate actions” (p. 3). The classification problem 

identified by Ince and Porter (2006) still existed. As Brückner explained, “one of the important weaknesses is 

that Datastream does not provide time-series information about the market segment in which a stock is listed. 

As a consequence, the standard procedure of using portfolio breakpoints from the top market segment cannot 

be followed,” which has great implications for size effect related studies (p. 1). Brückner also identified 

incorrect classification due to the improper translation of the German term “Vorzugsaktien” (“non-voting 

stock”) into “preferred stocks.” As Brückner described, Datastream typically classified the German non-voting 
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stocks as preferred shares, causing the German non-voting shares incorrectly removed from data samples (p. 

3). Brückner didn’t recommend Datastream as the primary data source for German stock market studies 

before 1990 and warned researchers that equity data after 1990 should be handled with care. 

 

Landis and Skouras (2018) reiterated the problem caused by the improper classifications of the database - 

only including the current exchanges for socks and excluding secondary exchanges. They explained that this 

problem would “induce a sample selection bias because it will lead to the exclusion of stocks that are in 

secondary exchanges because they have been demoted from a primary exchange due to poor performance” 

(Landis & Skouras, 2018, p. 8).  

 

Tobek and Hronec (2018) compared Compustat with Datastream and found systematic differences in the 

raw financial statements. They pointed out that “different stock coverage across the databases can lead to large 

statistically and economically significant disparities in the returns” (Tobek & Hronec, 2018, p. 1).  

 

Nobes and Stadler (2018) mentioned another relatively complex problem of the “number of shares free float” 

data (data field NOSHFF) in Datastream. The data field represented the percentage of total shares available 

to ordinary investors. They noticed that for many large Chinese state-owned enterprises who had shares traded 

in both Mainland China (A Shares) and Hong Kong (H Shares), the NOSHFF was misleading. “Because 

Datastream collects NOSHFF for each of the two types of shares individually, even though the share capital 

of the firm comprises A and H Shares. For example, PetroChina has a NOSHFF of 90% at 31 December 

2013 for H Shares (Datastream Code 280366), suggesting that it is not government-controlled. However, 

taking A and H Shares together, 86.51% of the total share capital is in government hands. This is relevant 

because PetroChina uses IFRS for its Hong Kong listing and, when the firm is included in an IFRS study, 

information related to H Shares is probably used” (Nobes & Stadler, 2018, P. 608). 

 

3) Worldscope 

The Worldscope database was created by the Wright Investors' Service, a US-based global money 

management firm. The company identified the need for such resources in their international investment 

management activities. In 1990, the Wright Investors' Service and the Disclosure Inc. (a division of Primark 

Corporation) formed as a joint venture Worldscope/Disclosure Partners. Primark acquired the remaining 

interest in Worldscope in 1999. In 2000, Thomson Corporation acquired Primark Corporation and 

Worldscope became one of its featured products ever since (Thomson Reuters, 2013). Worldscope is 

featured with detailed standardized financials, analysis, and stock performance information on the world’s 

leading public corporations as well as many key private companies (Thomson Reuters, 2008, 2016). The 

database is used frequently in cross-country equity research with many instances used for equity research in 

emerging markets (Lins & Servaes, 2002; Alfaro et al., 2019; Esqueda & O’Connor, 2020). The database is 

sometimes used together with I/B/E/S and BvD Orbis (Acker & Duck, 2009; Daske et al., 2013; Gupta, & 

Krishnamurti, 2016; Alfaro et al., 2019).  It is also frequently used together with Datastream (Daske et al., 

2013; Weiß & Mühlnickel, 2014; Lu et al., 2017; Landis & Skouras, 2018; Zhang et al., 2019; Jacobs & 

Müller, 2020). 
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Firat (2002) noticed the puzzling differences in reported financial data in Worldscope and Datastream. 

Worldscope explained what contributed to the differences was the different reporting standards (namely data 

item definitions and representations) used by the different databases to meet different user preferences (Firat, 

2002). As Firat explained, based on those preferences, database providers usually provide financial data in one 

or more of the following ways: “As Presented (data provided by the SEC and similar foreign agencies); As 

Reported (data modified to fit a standard attribute naming convention); In Local Format (data fits local 

accounting practices); and Standardized (data modified based on the knowledge of the industry and extensive 

research in order to allow meaningful performance analysis)” (p. 2). Firat believed that these preferences and 

local adaptations of data contributed to data-level, ontological and temporal heterogeneity in financial data 

sources (pp. 2-3).  

 

Ulbricht and Weiner (2005) systematically compared Worldscope and Compustat to investigate whether the 

choice of the data sources has an impact on the outcome of empirical research. They found that the two 

databases lead to comparable results, but if the size bias is not treated with care, the outcome may differ 

considerably (Ulbricht & Weiner, 2005, p. 1). Their research found that the coverage of Worldscope data is 

25% broader than Compustat since 1998, but the overall quality of Compustat is higher than Worldscope 

(Ulbricht & Weiner, 2005, p. 12). The statistics for key accounting items such as net sales showed the mean 

and median values differ significantly between the two databases (Ulbricht & Weiner, 2005, p. 12). Appling 

two datasets to the multiple valuation procedure, which compared the estimated enterprise value and the 

observed enterprise value, they concluded that Worldscope had significantly lower valuation error than 

Compustat (Ulbricht & Weiner, 2005, P. 27). 

 

Acker and Duck (2009) compared hand-collected earnings announcement dates for UK companies with their 
counterparts in Worldscope and found 8% of the Worldscope dates were incorrect (p. 5). As they reviewed 
the reliability of I/B/E/S earnings announcement dates, they found 22% discrepancies between Worldscope 
and I/B/E/S and expressed their concerns over the internal consistency of Thomson Reuters (Acker & Duck, 
2009).  
 
Daske et al. (2013) utilized Worldscope and Compustat Global Vantage to study the liquidity and cost of 

capital effects around the voluntary and mandatory International Accounting Standard (IAS) and 

International Financial Reporting Standards (IFRS) adoption. As a byproduct of the research, they used 

massive hand-collected data to assess the suitability of commercial databases for their research question and 

gauge the effect of potential misclassifications. They found “the two data sources provide contradictory 

information on about every third IAS firm-year observations” (Daske et al., 2013, p. 536). They also noticed 

that both databases exhibited “substantial classification differences” compared to their hand-collected data 

from the annual reports – “hand-coding disagrees in about 25% of the cases with Worldscope or Global 

Vantage” (Daske et al., 2013, p. 536). They also revealed that the two databases have substantial differences 

in the proportion of IAS adopters at the individual country level. One example was that the percentage of IAS 

adopters in Italy was as high as 78.7% according to Worldscope, but only 0.2% based on Compustat Global 

Vantage; while the hand-coding indicated that the percentage was 25.1%. The researchers finally created an 
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“augmented” Worldscope data, for which they used hand-coded data and Compustat Global Vantage data to 

correct the initial Worldscope coding. This practice led to 2,202 cases, for which their hand-coded data 

overrode the conflicting Worldscope data (Daske et al., 2013, p. 537). They reminded other researchers: 

“because of the large number of inconsistencies, commonly used accounting standards classifications in 

Worldscope and Global Vantage have to be used judiciously” (Daske et al., 2013, p. 500). 

 

Weiß and Mühlnickel (2014) had to exclude 25 insurers from a 154-insurer sample due to incomplete 

balance-sheet variables in Worldscope. They noted that “excluding insurers with incomplete data from the 

analysis could lead to a selection bias in the results because the incompleteness of an insurer's data could be 

the result of the insurer's opacity. The sample could thus be biased because (presumably) systemically riskier 

insurance firms are systematically omitted” (Weiß & Mühlnickel, 2014, p. 33). They had to take great effort 

to manually check other sources to mitigate this bias (Weiß & Mühlnickel, 2014). 

 

McGuire et al. (2016) compared the data from Compustat Global, Osiris, and Worldscope and confirmed 

that researchers would likely come to a different conclusion based on the database used – particularly for 

developing country studies. They found a significant number of missing values for reported employee data - 

only 17.4% of observations reported employee data in 2010 (McGuire et al., 2016). They raised another 

concern over the treatment of delisted or unlisted firms in Worldscope: “data on firms not currently covered 

in Worldscope (due to delisting, bankruptcy, merger, or deletion from the database) are not available for prior 

years even though the firm might have been traded, and data [has been] reported during an earlier period. 

Firms included in later years but not previously covered were listed as having missing data for earlier years. 

Therefore, the ‘raw’ number of Worldscope firms (not considering missing data) were identical for each year. 

Similar issues did not appear in the other two databases” (McGuire et al., 2016, p. 190).  

 
Nobes and Stadler (2018), as they studied the international differences in financial reporting, addressed four 

data problems of Worldscope: 1) Current data. For some data fields, such as “stock exchange listed” or 

“industry classification,” only the current data was available. This created problems for time-series research 

and sampling. 2) Misleading data. For example, the Worldscope data of pension discount rates for Italy's Eni 

was 8.35% in 2010; however, Eni's 2010 Annual Report disclosed the discount rates for obligations under 

“TFR” (an Italian defined benefit pension obligation) was 4.8% and for the obligations under “Foreign 

pension plans” was 2.7-14.0%. The data value reported in Worldscope didn’t reflect any single value or sum, 

so the number was misleading. 3) Missing data. For instance, Worldscope systematically showed an empty 

field for actual return on plan assets, however, according to the pension accounting requirements, the actual 

return on plan assets was the sum of (i) expected return on plan assets and (ii) actuarial gains/losses related to 

the plan assets, which were required disclosures under the IFRS. 4) Erroneous data. They compared the 

“projected benefit obligation” data of the German HDAX equity index firms in the period 1998 to 2006 in 

Worldscope with their hand-collected data. Among 433 firm-year observations that both datasets had, they 

found 47 observations that Worldscope deviated more than 5% from the hand-collected data, which 

indicated that more than 10% of the investigated data in Worldscope were erroneous by a significant amount. 
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They also spotted errors resulted from the status changes of companies such as delisting from stock exchange 

(Nobes and Stadler, 2018).  

 

4) SDC Platinum 

SDC Platinum (hereafter, “SDC”) was a premium product of the Securities Data Co, a New Jersey-based 

company. The company was acquired by Thomson Financial in 1988 (Dalton, 1996). In 1999, the joining of 

the Investext Group, Securities Data Co., and CDA/Spectrum created the Thomson Financial Securities Data 

(TFSD), which is a part of the Thomson Financial (Library of Congress, n.d.). The featured content of SDC 

includes global mergers and acquisitions (M&A) transactions, bond deals, equity capital market new issues, 

and global corporate loan transactions (Refinitiv, 2020). The database is used widely by scholars for empirical 

research on M&A and strategic alliances (Croson et al., 2004; Netter et al., 2011; Barnes et al., 2014; Keasler 

& Denning, 2009; Yan et al., 2020.). The database is often compared with the BvD Zephyr database (Ma et 

al., 2009; Bollaert & Delanghe, 2015). Since SDC provided access to the VentureXpert database, some 

researchers also used the database to research private equity and venture capital transactions (Rogers, 2020). 

The database is often used together with Worldscope, Datastream, CRSP, and Compustat (Faccio & Masulis, 

2005; Netter et al., 2011; Mulherin & Aziz Simsir, 2015; Betton et al., 2018). 

 

Faccio and Masulis (2005) collected the M&A partners’ identities, country, and industry (3 digit SIC code) 

data from SDC. They also gathered the initial announcement date, dollar value, method of payment, and legal 

form of the deals. The researchers reported that due to the inconsistent entries in SDC, they had to collect the 

“method of payment” information from the description section, rather than the “method of payment” data 

field (Faccio & Masulis, 2005, p. 12). They realized that the bidder and target information for European 

bidders is “often missing” (Faccio & Masulis, 2005, p. 12). They doublechecked the outliers in “deal value” 

using LexisNexis and found many mistakes in the SDC database (Faccio & Masulis, 2005, p. 55).  

 

Boone and Mulherin (2007) showed that the inaccurate data in SDC caused “incorrect inferences [of prior 

research] on the association of termination provisions with judicial decisions, bidder toeholds, and deal size” 

(p. 485). The inaccuracy stemmed from “the incomplete reporting of termination provisions in the SDC 

database” (Boone & Mulherin, 2007, p. 469). For 400 takeovers included in their sample, the researchers 

found “the SEC filings indicated that 91% of the sample takeovers had a termination provision. By contrast, 

the SDC data report termination provisions for only 66% of the takeovers, a difference of 25%” (Boone & 

Mulherin, 2007, p. 469). To find out if the under-reporting was just for their sample, they conducted a 

random sampling at a larger scale. For the 73 deals selected from the random sample, SDC classified 23 

(31.5%) as having a termination fee, a stock option agreement, or both; however, the classification based on 

SEC documents found 57 (78%) of the 73 deals had a termination fee, a stock option agreement or both 

(Boone & Mulherin, 2007, p. 469). They summarized that “the difference between the SEC filings and the 

SDC data is especially noticeable in the early years of the sample. In 1989 and 1990, the difference is 50% or 

more. The differences are also 40% or more in 1993 and 1996. In 1997 and later, the differences are not as 

large” (Boone & Mulherin, 2007, p. 469). They also found that the accuracy of the SDC data was related to 

firm size (Boone & Mulherin, 2007, 472).  
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Banyi et al. (2008) identified several problems of SDC data in estimating share repurchases: “overall, SDC 

announcements of repurchases do not include all repurchase programs; [they] are poor predictors of the 

number of shares that will be repurchased by a firm, and are not inclusive of all repurchase authorizations” (p. 

463). Chapman and Klein (2009) searched the deals of the Kohlberg Kravis Roberts & Co. in SDC and 

found “its first important deal, an acquisition of Houdaille Industries, was missing, and of more than 150 

transactions that the company is the named buyer, only 30 appear in SDC” (p. 4). They also disclosed that in 

syndicated transactions, it is often difficult to distinguish the firms coded as a “buyer” from the firms coded 

as an “investor” (Chapman & Klein, 2009, p. 4). 

 

Netter et al. (2011) analyzed a comprehensive set of SDC M&A data between 1992 and 2009. They found 

that the number of domestic deals data before 1988 in SDC was considerably less than the dataset reported by 

the W. T. Grimm & Co. (Netter et al., 2011, p. 2320). They believed that the subjective nature of defining 

the different types of M&As was a challenge - although researchers established eight types of classifications 

based on different characteristics of M&A transactions, “the SDC classifications are more general and are 

broadly based on the amount of the firm acquired” (Netter et al., 2011, p. 2321). They also expressed their 

concerns over the transparency of the SDC data: “SDC provides very little guidance as to how the data are 

collected or how the variables that classify the data are defined. This lack of guidance leaves the researcher 

with little help in determining if classifications regarding M&As are correct or appropriate for his or her 

research.… [Also, due to the lack of proper sources to compare],  there is also little certainty on the degree to 

which the SDC database is complete, even when one of the parties in the transaction is public” (Netter et al., 

2011, p. 2323).  

 

Barnes et al. (2014) compared 20 years of data from SDC with their hand‐collected dataset. They found that 

their hand‐collected data was generally more accurate than SDC data, but the accuracy and coverage of SDC  

improved over time. “SDC also appeared to be fairly complete from 1984 onward; however, coverage before 

1984 appears to be poor to moderate compared with our hand‐collected data set” (Barnes et al., 2014, p. 

795). Their investigation of the discrepancies between the two datasets found that “SDC is more prone to 

errors on smaller, high book‐to‐market acquirers with weak announcement period market responses. 

Preliminary analyses suggest that this potential bias is not significant, but could affect inferences when 

examining smaller, high book‐to‐market firms” (Barnes, et al., 2014, P. 793). 

 

Bollaert and Delanghe (2015) carried out an in-depth analysis between SDC and Zephyr and tried to assess 

the information quality and suitability for different types of research. Their research found that SDC is more 

suitable than Zephyr for most M&A research. However, for the research related to the acquisitions that 

involve multiple acquirers and targets, Zephyr seemed more suitable than SDC (Bollaert & Delanghe, 2015, p. 

97).  

 

Mulherin and Aziz Simsir (2015) investigated the accuracy of the “original date announced” (ODA) data 

field in SDC. Using news articles from the LexisNexis database, they found “the actual frequency of ODA 
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events is more than double the frequency of the events that are reported in the SDC database, …even though 

the SDC fails to record a significant portion of merger-related events of all types, its accuracy is lowest for the 

search for buyer announcements” (Mulherin & Aziz Simsir, 2015, pp. 2, 6).  Betton et al. (2018) used the 

“takeover announcement dates” data in SDC to study takeover rumor rationales. To verify if the associated 

announcement dates were accurate, they conducted a manual search of both Factiva and Google for the 

announcement dates and corrected “52 errors and 143 omissions found within SDC” (Betton et al., 2018, p. 

274). 

 

Professor Ritter (2019) has extensively used SDC for initial public offering research and has curated a list of 

errors and mistakes from the SDC database. Ritter noted that the mistakes include a wide range of 

misclassifications regarding the unit offers, REIT, industry classification (i.e. SIC), and errors in financial data 

such as sales, assets, offer prices, and market prices. The document highlighted the following mistakes in SDC: 

(1) In general, SDC has a high error rate on the post-issue shares outstanding. The database sometimes adds 

the shares issued to the post-issue number of shares outstanding, double-counting the shares issued. (2) The 

number of overallotment shares exercised is frequently wrong. Many IPOs are listed as having 0 shares 

exercised, when in fact some or all of the overallotment option was exercised. (3) SDC has some mistakes in 

the number of managing underwriters. In a few cases, they list the total number of underwriters in the 

syndicate rather than the number of managers. (4) IPOs that had financial sponsors (venture capitalists or 

buyouts) sometimes are not classified as such. (5) Some offerings classified by SDC as an IPO was already 

trading on the pink sheets or bulletin board and could be classified as a follow-on offer. Also, the database 

lists a lot of foreign companies that issued American Depository Receipts (ADR) or American Depository 

Shares and listed on the NYSE or NASDAQ as IPOs when in fact they were follow-on offerings (Ritter, 

2019). 

 

Ritter (2016) also supplemented missing or questionable data from SDC with the data from prospectuses 

retrieved from EDGAR and other sources. In the updates on IPO statistics, Ritter excluded ADRs in most 

cases because, “among other reasons, the accounting data is not always reliable (SDC sometimes makes 

translation mistakes)” (Ritter, 2020, p. 42)  

 

5) Other Thomson Reuters -Refinitiv Products 

 

a. The Thomson Mutual Fund Holdings Dataset (s12 data file) 

Schwarz and Potter (2016) disclosed significant discrepancies between the SEC filings and the Thomson 

Mutual Fund Holdings dataset and found 20% of their sampled portfolios (77,555) included in the SEC 

filings were not available in Thomson’s data. Zhu (2020) found the coverage of Thomson’s dataset “drops 

significantly in 2008 and continues to deteriorate” (p. 1201). “58% of newly founded US equity mutual fund 

share classes in the CRSP mutual fund database from 2008 to 2015 cannot be matched to the Thomson 

Reuters database” (Zhu, 2020, p. 1193).  

 

b. VentureXpertdata (via Eikon or Thomson ONE) 
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Gornall and Strebulaev (2015) recorded many missing and miscoded venture capital data in Thomson ONE. 

Kaplan and Lerner (2016) commented “there are large inconsistencies in VentureXpert and VentureSource9 

databases and a general problem of incompleteness.… Qualitatively, both show deterioration in data quality 

over the past decade… [VentureXpert’s exit status] coverage has dropped dramatically in recent years, 

suggesting a lack of investment in collecting new data” (pp. 5-6). Röhm et al. (2019) pointed out that the 

data problems caused by the different definitions of “corporate venture capital” across venture capital 

databases were prevalent.  

 

4. Bureau Van Dijk (BvD) Product: Orbis  

 

The Bureau Van Dijk was firstly established under the name Bureau Marcel van Dijk with one of its offices in 

Brussels in the 1970s (World Heritage Encyclopedia, 1991). The company spun off from the Bureau Marcel 

van Dijk in 1991 (Bureau Van Dijk, n.d.). In 2017, the company was acquired by Moody's Analytics. Orbis is 

BvD’s flagship database that provides public and private company data. The private company data, particularly 

company financials are sourced from official registers, reporting companies, and third-party data providers 

(Franchina, & Sergiani, 2019, p. 396). Orbis features a standardized format, which allows users to compare 

companies across regions and countries. The database offers a 10-year history function for academic research. 

Orbis Historical provides access to historical data going back 15-20 years (Bureau Van Dijk, 2020). The 

financial and ownership data in Orbis are widely used by researchers to study companies in European 

countries (Jaraitė, et al., 2013; Monasterolo et al., 2017; Katz, 2019; Succurro & Costanzo, 2019; Kalemli-

Ozcan, 2019).  Other BvD research products used frequently for academic research include Amadeus 

(focusing on companies across Europe), Osiris (information on listed, and major unlisted/delisted, companies 

across the globe), and Zephyr (information on M&A, IPO, private equity and venture capital deals).  

 

Jaraitė et al. (2013) matched the Operator Holding Accounts and the Person Holding Accounts from the 

European Union Emissions Trading System to their parent companies using the Orbis database. The research 

found that over 25% of the past “global ultimate owner” data and 15% of the current “global ultimate 

owner” data were either not available or BvD IDs were not traceable in Orbis. Hintermann and Ludwig 

(2019) confirmed that they were not able to associate all accounts in EU Transactions Log with the Orbis 

database, especially for Person Holding Accounts. Didier et al. (2015) matched the security issuances data in 

SDC with the balance sheet information from the Worldscope and Orbis. They found that the matched 

SDC-Worldscope dataset covers a longer period (including the 1990s), but the “matched Worldscope dataset 

contains a smaller set of firms than the matched Orbis dataset” (Didier et al., 2015, p. 10). Monasterolo et al. 

(2017) identified several issues regarding the classification of entities and shareholders in Orbis. Kalemli-

Ozcan et al. (2019) proposed strategies to construct nationally representative firm-level longitudinal data for 

27 European countries, because they noticed that the data samples downloaded from Orbis were often not 

nationally representative.   

 

                                                
9 Dow Jones’ VentureSource is often compared with VentureXpert for venture capital research. The Dow Jones discontinued its 
VentureSource database and services as of March 31, 2020 (Dow Jones, 2020). 



 
The Version of Record of this manuscript has been published and is available in Journal of Business & Finance Librarianship, Nov 19, 2020, 
DOI:10.1080/08963568.2020.1847555 

 

26 

Kalemli-Ozcan et al. (2019) further explained the problems of the financial module and the ownership 

module in Orbis and Amadeus. They found that for historical financial information, researchers may 

encounter the following problems: (1) download speed and cap issues. Download speed is generally slow since 

the product is not designed for bulk data downloads. The downloaded files may have missing information due 

to the data download cap. (2) survivorship bias. Amadeus will delete a company from the database if the 

company did not report anything in the last 5 years. Comparatively, Orbis will keep this company as long as 

the company is active in the business register. (3) reporting lag of about 2 years, on average. There are 

differences in the coverage of particular variables and the lag varies by country and by data product. (4) 

presentation format issue. “Certain variables, such as employment, will not be on the balance sheet, but rather 

in memorandum item” (Kalemli-Ozcan et al., 2019, p. 22).  (5) merging issues. The unique company BvD ID 

number may change over time due to “changes of address, legal form, or M&A activity” or maybe changed by 

BvD to “harmonize the IDs across databases using a set of priority rules” (Kalemli-Ozcan et al., 2019, p. 22). 

For the ownership module, they mentioned that researchers may encounter problems including (1) Vintage 

issue.  BvD browser online only contains the latest available ownership information (static or “as of date”). 

Historic (time-series) ownership information is only available in the company’s standard report, which cannot 

facilitate large dataset download for academic research. (2) Merging issues. The BvD ID changes also cause 

problems in tracking ownership changes (Kalemli-Ozcan et al., 2019, p. 23).  

 

Regarding why “Orbis web browser interface displays a large number of unique firm identifiers, but the actual 

financial or real variables, when downloaded, turn out to be missing, especially going back in time,” Kalemli-

Ozcan et al. (2019) explained that it may result from reporting lag, deletion of company records due to no 

report for a certain period, a download cap or some variables were not covered in specific data platforms such 

as the Wharton Research Data Services (Kalemli-Ozcan et al., 2019, p. 4). Previously, responding to the 

questions from the Business Information Review Survey on the inadequate coverage of the business 

information in Orbis, Green (2003), the Head of Marketing and Communication from BvD, explained that 

the confusion often came from the lack of understanding of different reporting obligations in different 

countries. “Some gaps in private European company information are better known than others. An example 

often cited is that of Germany, where large numbers of private companies flout filing obligations. Conversely, 

the UK and Belgium have high levels of compliance. In the Netherlands, accounts are filed but companies are 

often slow to submit” (Green, 2003, p. 69). 

 

5. Other Sources 

 

Except for the databases mentioned above, this research encountered many articles that examined other data 

sources. Here we provide a summary of these sources. 

 

1) Mergent Online 

Tallapally (2009) reported that hundreds of bond issue data were excluded from their sample because the data 

was not available in Mergent. When mining competitor relationships using Mergent Online, Ma et al. (2011) 

estimated that the company profiles from Mergent cover only 24.9% of all competitor pairs. Berrios (2013) 
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used the database to draw samples from state commercial banks and used the ownership (percent of shares 

held by bank insiders), compensation, tenure, and financial data to analyze the relationship between bank 

credit risk, profitability, and liquidity. The sampling frame included 793 public companies generated with SIC 

6022 State Commercial Banks. Among the 79 US banks selected from random sampling, 39 (49%) banks 

were excluded from their analysis because the financial data were incomplete (Berrios, 2013). Lu and Shang 

(2017) obtained a sample of 1,113 companies from Mergent Online to study their supply chain structure. 

246 (22%) companies were excluded from the sample due to the lack of relationship or product tree data.  

 

2) Value Line 

Anderson and Lee (1997) found that the discrepancies between the Value Line and the Spectrum databases 

could affect economic inferences drawn from regressions using their “ownership” data. Discrepancies were 

also reported between Value Line and Compustat (Kern & Morris, 1994; Yang et al., 2003). Ramnath et al. 

(2005) compared Value Line with I/B/E/S and found that “I/B/E/S earnings forecasts outperform Value 

Line significantly in terms of accuracy and as proxies for market expectations” (p. 185). However, Zhang and 

Alexander (2016) reviewed half a century of research on Value Line and found “the evidence on Value Line 

enigma is less than conclusive, … and despite some mixed results, the evidence seems to suggest that Value 

Line EPS data are accurate and reliable relative to those of [I/B/E/S]. Moreover, evidence strongly suggests 

that reporting discrepancies of financial statement data between [Value Line] and other databases exist, and 

the selection of database could materially affect the results of the study” (p. 812). 

 

3) ReferenceUSA 

Cook et al. (2012) reviewed the data quality of ReferenceUSA’s New Businesses database and found “in the 

one-month sample, almost 40% of the firms had invalid phone numbers” and “the number of employees was 

not checked prior to its release,” so they believed that the database was not vetted as they promised (p. 309). 

Their communication with the vendor confirmed that the database is “comprised of records gleaned from 

many sources and is not verified” (Cook et al., 2012, p. 310). They also mentioned that after the release of 

their article, the ReferenceUSA invited several librarians to visit their research center and introduced a new 

feature to their records: verified versus non-verified businesses (Cook et al., 2012, p. 300). 

 

Besides, researchers also disclosed the data quality issues of regional financial data aggregators for Malaysia 

(Suret et al., 1998), Korea (Nam et al., 2017), and European countries (Olbrys and Majewska, 2014). 

 

Discussion 

 

After reviewing the literature on individual databases, we have identified several categories of data quality 

problems, including missing values, data errors, discrepancies, biases, inconsistencies, static header data, 

standardization, changes in historic data, lack of transparency, reporting time issues and misuse of data. These 

problems are not separate. They are intricately related to each other. Since the literature review covers nearly 

50 years of publication, some of the problems identified in specific databases may no longer exist or have 

changed its form. This discussion is not to criticize a specific database, instead, it is to find answers to the 
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research questions, inform business researchers and librarians of common data problems and discuss their 

implications for business reference and research consultation. 

 

Common Data Quality Problems 

 

1. Missing Values 

Missing values are one of the most prevalent data quality problems. The CRSP files were found missing 

delisting returns, mutual fund returns, and mandated mutual fund portfolios (Shumway, 1997; Elton et al., 

2001; Wisen, 2002; Schwarz & Potter, 2016). A large number of data omissions were identified in 

Compustat (Boritz & No, 2013; Casey et al., 2016; Heitzman & Lester, 2020). The Omission of the “global 

ultimate owner” data was reported in Orbis (Jaraitė et al., 2013). Credit line data and outstanding debt data 

in Capital IQ were observed having a significant number of missing values (Mathers & Giacomini, 2016; Lee, 

2017). The balance-sheet data, the reported employee data, and the actual return on plan assets data were 

found missing in Worldscope (Weiß & Mühlnickel, 2014; McGuire et al., 2016; Nobes & Stadler, 2018). 

The information for bidders, termination provisions, share repurchase announcements, takeover 

announcements, and merger-related events were found missing in SDC (Faccio & Masulis, 2005; Boone & 

Mulherin, 2007; Banyi et al., 2008; Mulherin & Aziz Simsir, 2015). The Bond issue data, stock financial data, 

competitor data, and product tree data in Mergent Online were found incomplete (Tallapally, 2009; Ma et al., 

2011; Berrios, 2013; Lu & Shang, 2017).  

 

Researchers often identify missing values by directly comparing the data with the original data in SEC filings 

and more recently, with the XBRL-tagged interactive data from SEC’s EDGAR (Tallapally et al., 2011; 

Boritz & No, 2013; Chychyla & Kogan, 2015; Schwarz & Potter, 2016). Missing values happen more 

common to complex accounting concepts such as “net operating loss,” “credit line,” “outstanding debt,” 

“actual return on plan assets” (Mathers & Giacomini, 2016; Lee, 2017; Nobes & Stadler, 2018; Heitzman & 

Lester, 2020). Missing values also more frequently occur to complex transactions that need great effort to 

track the changes such as share repurchases and mergers and acquisitions (Banyi et al., 2008; Chapman & 

Klein, 2009; Netter et al., 2011). Missing values are more often observed for the data in footnotes or the data 

that do not directly appear on financial statements, such as “actual return on plan assets” or “undrawn 

revolving credit” (Mathers & Giacomini, 2016; Nobes & Stadler, 2018).  In Orbis, missing value can also 

occur due to the cap on the amount of data allowed to be downloaded (Kalemli-Ozcan et al., 2019). 

 

Researchers sometimes take special procedures or filters to exclude missing values from the research sample. 

However, this practice may inevitably create omission bias or selection biases (Elton et al., 2001; Weiß & 

Mühlnickel, 2014). Dropping all observations that contain missing values is a naïve strategy and can have a 

marked effect on the statistical power of the tests (Hribar, 2016, p. 63). Excluding missing values can create 

misleading results and a great number of missing values may make a database not usable for specific research 

(Francis et al., 2016; Lee, 2017). Missing delisting returns can result in delisting bias and other unknown data 

biases confounding empirical results (Shumway, 1997; Shumway & Warther, 1999). Missing values can be 

reduced by comparing the datasets with the SEC filings or other data sources. Casey et al. (2016) proposed a 
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Modified Financial Statement Balancing Model to partly solve the problems of missing values or erroneous 

entries and restore them into usable data points such as zeros or summary amounts.  

 

2. Data Errors 

Data errors are another common data quality problems. Many arithmetic errors, coding errors, merger date 

errors, portfolio position errors were found in CRSP (Courtenay & Keller, 1994; Elton et al., 2001; Schwarz 

& Potter, 2016). Typos or rounding errors, classification errors, calculation errors, miscoded auditor variables 

were found in Compustat (San Miguel, 1977; Chychyla & Kogan, 2015); misclassification of entities and 

shareholders were found in Orbis (Monasterolo et al., 2017). The disparity between Capital IQ credit line 

data and the data in 10-K filings were found significant (Mathers & Giacomini, 2016). Analyst codes and 

earnings announcement dates in I/B/E/S were observed subject to reporting errors (Acker & Duck, 2009; 

Roger, 2017). Data errors in volume, prices, shares, return and total return indices, classifications, dates, and 

delisting information were found in Datastream (Bloom et al., 2004; Rossi, 2011; Brückner, 2013). Errors in 

the unit offers, industry classifications, sales, assets, offer prices, market prices, or deal values were reported in 

SDC. A high error rate of post-issue shares outstanding, the number of the overallotment shares exercised, and 

the number of managing underwriters was reported in SDC as well (Ritter, 2019). 

 

Many researchers identify data errors by comparing different databases or by comparing the database with 

their hand-collected data (Beedles & Simkowitz, 1978; Courtenay & Keller, 1994). Data errors can happen in 

simple forms such as typos or rounding errors. But more often, data errors happen in more complex forms. 

Data error may result from improperly including or excluding certain accounting items in computations, such 

as including contract research into R&D expenses, mistreating operating and investing activities, excluding 

accrued imbalances payable from accounts payable (San Miguel, 1977; Shi & Zhang, 2011). Errors are more 

likely to occur to complex financial concepts such as “cost of goods sold,” “gross profit,” or “net operating 

loss” than to simple concepts such as “total assets,” “total liabilities,” or “net income” (Chychyla & Kogan, 

2015; Heitzman & Lester, 2020). Errors more often happen to complex transactions such as mergers and 

acquisitions, changing exchanges, delisting, or stock splits (Andrikopoulos et al., 2007; Rossi, 2011; Nobes & 

Stadler, 2018; Ritter, 2019). Miscoding errors in auditor variables happen more often when there are auditor 

changes (Utke, 2018). Error rates are generally higher for items reported in the footnotes than for the items 

reported on the income statement or balance sheet (Kinney & Swanson, 1993; Bratten et al., 2016). 

Classification errors can happen due to the misunderstanding of business and financial concepts such as 

common stocks or industry classifications (Ince & Porter, 2006; Ritter, 2019). In terms of foreign firms or 

foreign transactions, errors may result from improper translation or interpretation of foreign accounting terms 

or foreign firm conditions (Brückner, 2013; Nobes & Stadler, 2018). Errors also arise when databases don’t 

promptly update the data when there are changes in exchange, industry classification, auditor, restatement, etc. 

(Rossi, 2011; Chychyla & Kogan, 2015; Utke, 2018).  

Data errors can in many ways distort the results of related studies (Acker & Duck, 2009). Rounding prices to 

the nearest penny may not be a hard error, but it can cause nontrivial differences in the calculated returns 

when prices are small (Ince & Porter, 2006). Reporting errors in analyst codes can impact the evaluation of 



 
The Version of Record of this manuscript has been published and is available in Journal of Business & Finance Librarianship, Nov 19, 2020, 
DOI:10.1080/08963568.2020.1847555 

 

30 

analysts’ characteristics and may bias empirical studies that rely on tracking analysts (Roger, 2017). Large 

errors can influence some properties of the sample to a degree out of proportion to their small number, 

introducing biases and polluting statistical analyses (Rosenberg & Houglet, 1974). A large amount of 

inaccurate information would need researchers to independently validate the data, which undermines the value 

of using commercial databases (Elton et al., 2001). Data errors can be detected and reduced by cross-checking 

with other sources. The Modified Financial Statement Balancing Model can be used to find erroneous entries 

(Casey et al., 2016). Statistical sampling methods are often used to identify data errors and outliers (CRSP 

LLC, 2020c).  

3. Discrepancies 

Many researchers found discrepancies when comparing different databases or datasets (Grinblatt et al., 1984, 

Sarig & Warga, 1989; Guenther & Rosman, 1994; Courtenay & Keller, 1994; Kern & Morris, 1994; Kahle & 

Walkling, 1996; Elton et al., 2001; Yang et al., 2003; Ulbricht & Weiner, 2005; Daske et al., 2013; Bollaert 

& Delanghe, 2015; McGuire et al., 2016; Tobek & Hronec, 2018). Discrepancies may result from differences 

in database coverage, definitions, coding policies, identifiers, classifications, calculation models, selection 

biases, or data errors (Sarig & Warga, 1989; Courtenay & Keller, 1994; Kern & Morris, 1994; Yang et al., 

2003; Tallapally, 2009; Dreyer & Hines, 2014; Nam, et al., 2017). 

 

Most often, discrepancies are found by comparing two different databases or datasets. However, discrepancies 

can also happen within one database particularly in the aggregator databases that acquire data from different 

sources. For example, researchers found that the I/B/E/S actual EPS differs from the analyst’s inferred actual 

EPS 39% of the time (Brown & Larocque, 2011, 2013). Discrepancies are more common for complex 

transactions such as stock splits, stock dividends, mergers and acquisitions, accounting changes, or 

discontinued operations (Grinblatt et al., 1984; Courtenay & Keller, 1994, Kern & Morris, 1994). 

Discrepancies are more prevalent for data items that rely on a subjective assignment such as SIC code 

(Guenther & Rosman, 1994; Kahle & Walkling, 1996; Stasch, 2014); Discrepancies may happen due to the 

standardization procedures in databases which may not necessarily benefit empirical research (Tallapally et al., 

2012; Chychyla & Kogan, 2014). A higher level of discrepancies among databases is identified for 

international data, particularly the data for developing countries (Lara et al., 2006; Daske et al., 2013; 

McGuire et al., 2016; Hines & Sharma, 2018). The great disparity in data availability between different 

countries is largely due to the different accounting practices and filing rules based on different historical and 

cultural practices (Green, 2007). Firat (2002) identified at least three types of heterogeneities (data-level, 

ontological and temporal heterogeneities) between databases. The differences arise when databases choose 

different units, scales, or formats to represent the same firm’s data; or when they apply different accounting 

definitions, currency conversion policy; or when entity values or definitions belong to different times, or time 

intervals (Firat, 2002). 

 

Discrepancies across databases imply that it would be risky to rely on any single database (McGuire, 2016). 

Discrepancies can further lead to the “database effect,” which means researchers would come to different 

conclusions based on different databases. Differences in databases can affect sample selections, the inferences 
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about the population, and can further affect the outcome of empirical research (Kern & Morris, 1994; Kahle 

& Walkling, 1996; Lara et al., 2006; McGuire et al., 2016). Many researchers choose to use multiple data 

sources for their research; however, great effort needs to be taken to compare coding policies, matching, 

filtering, and cleaning data (Chakrabarty & Trzcinka, 2006). 

 

4. Biases 

The concerns about biases in databases are widely discussed. Upward bias, delisting bias, omission bias, 

survivorship bias, incubation bias, backfill bias (or ‘instant-history’ bias), and duplication bias were found in 

CRSP (Loughran & Ritter, 1995; Shumway, 1997; Canina et al., 1998; Shumway & Warther, 1999; Elton et 

al., 2001; Wisen, 2002; Yan, 2007; Evans, 2010; Jorion and Schwarz, 2017; CRSP, 2020). Survivorship bias, 

ex-post-selection bias, and look-ahead bias were found in Compustat (Ball, 1979; Banz & Breen, 1986). 

Survivorship bias and selection bias were reported in Datastream and Orbis (Ince & Porter, 2006; 

Andrikopoulos et al., 2007; Kalemli-Ozcan et al., 2019). 

 

Biases can happen for various reasons. Overstatement by a statistical measure or index can result in an upward 

bias (Rosenberg & Houglet, 1974; Loughran & Ritter, 1995). When observations are excluded from the 

sample due to a selection rule other than random sampling, it can create selection bias. Survivorship bias is an 

example of the selection bias driven by the disproportionate exclusion of stocks that were delisted over time 

(Waszczuk, 2014). Incubation bias is an example of selection bias due to excluding poor-performing new 

funds from adding or promptly adding to a database (Wisen, 2002). Backfill bias arises when the fund’s 

performance is not made public during some incubation period but then is added to the database presumably 

following the good performance (Jorion & Schwarz, 2017). Look-ahead bias occurs when data used in the 

study is assumed to be publicly available at a specific time while in reality, the data is only available at a later 

time (Andrikopoulos et al., 2007). Omitting delisting returns for a large number of companies can result in 

delisting bias (Shumway & Warther, 1999; Waszczuk, 2014). Biases are likely to occur to new firms, small 

firms, foreign firms, delisting firms, and firms with poor performance (Andrikopoulos et al., 2007; Landis & 

Skouras, 2018). Biases can distort empirical research results and produce unreliable conclusions. Some 

researchers try to remedy the survivorship bias by adding delisted firms back to their sampling. However, 

reducing biases greatly relies on the efforts of database vendors in improving data quality and data integrity. 

 

5. Inconsistencies 

Inconsistencies depict a situation where the data is not treated consistently with the same rule, particularly in 

the same database. Inconsistencies need to be further investigated for potential data errors. Inconsistency 

problems were reported in Compustat, Orbis, and SDC databases (McElreath & Wiggins, 1984, Faccio & 

Masulis, 2005; Shi & Zhang, 2011; Kalemli-Ozcan et al., 2019). One example of inconsistency is that the 

same accounting items are defined differently in different financial statements. It was reported that in 

Compustat “depreciation and amortization expenses” reported on the income statement and the cash flow 

statement included different items. The special events such as “selling of assets” and “inventory write-offs” 

were adjusted in the cash flow statement but not in the balance sheet. The restated amount reflected in the 

cash flow statement was not adjusted in the balance sheet. The change of classifications reflected in the 
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balance sheet was not updated in the cash flow statement (Shi & Zhang, 2011). Moreover, the inconsistency 

may occur to different periods, for example, Compustat’s definition of accounts payable in 2002 and 2003 

were different (Shi & Zhang, 2011). Inconsistency issues can also happen to proprietary identifiers. A 

proprietary identifier is often recognized as the unique ID to track a company; however, it may not be 

consistently used this way. Researchers disclosed that a company’s BvD ID can change due to changes in 

address, legal form, or M&A activities, which can cause problems in tracking changes of a company (Kalemli-

Ozcan et al., 2019).  

 

Researchers may assume that databases from the same vendor have the same reporting policy. But Mathers and 

Giacomini (2016) reminded researchers that Compustat and Capital IQ both from the S&P Global Market 

Intelligence have a different coding policy on a fiscal year (Mathers & Giacomini, 2016). I/B/E/S and 

Worldscope were both from Thomson Reuters, while 22% discrepancies between announcement dates were 

reported in these two databases (Acker & Duck, 2009). Information from different sections of a database may 

be inconsistent as well. Researchers reported that in SDC “method of payment” data obtained from the 

description section and the “method of payment” variable field have frequent differences (Faccio & Masulis, 

2005). Inconsistent data can create comparability problems (McElreath & Wiggins, 1984). It can cause 

similar problems to data errors and sometimes mislead researchers. Since it takes great effort for researchers to 

notice and resolve inconsistencies in databases, the problem undermines the value of commercial databases. 

 

6. Static Header Data  

The static header data issue (or vintage issue) happens when the database only provides the latest available 

information and lacks time-series records (Kalemli-Ozcan et al., 2019). Static header data issue happens 

mostly in the data field including “company name,” “ticker,” “address,” headquarter,” “ownership,” “stock 

exchange,” and “industry code” (Ince & Porter, 2006; Hines, 2016; Landis & Skouras, 2018; Nobes & 

Stadler, 2018; Kalemli-Ozcan et al., 2019). Such problems were observed in Compustat, Orbis, Worldscope, 

and Datastream (Ince & Porter, 2006; Hines, 2016; Landis & Skouras, 2018; Nobes & Stadler, 2018; 

Kalemli-Ozcan et al., 2019). The static header data erase the track record of prior changes, so it restricts 

researchers from including these data variables into time-series analysis. Since the data may not accurately 

represent the point in time, when using static header data fields to generate samples, it may induce incorrect 

samples, omissions, or selection biases (Landis & Skouras, 2018). 

 

7. Standardization 

Standardization and adjustments make the data more comparable across companies, over time, and particularly 

make it possible to compare companies from different countries. The obvious benefit of standardization 

makes it a selling point of several databases such as Compustat, Worldscope, and Orbis. However, 

standardization also causes data problems. The standardization and adjustment of “depreciation, depletion, 

and amortization” data in Compustat were found “understated 10-K cost of goods sold by 7.5%” and 

“overstate 10-K gross margin by 14.3%” (Bostwick et al., 2016). Researchers also found the standardization 

in Compustat “yields no improvements for bankruptcy prediction models and a significant negative impact on 

the predictive accuracy of Altman's model” (Chychyla & Kogan, 2014, P. 1). The standardization of stock-
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split adjusted I/B/E/S data and rounding to the nearest penny causes loss of information (Payne & Thomas, 

2003). So, researchers should be more deliberate of their choices of standardized vs. non-standardized 

datasets. Extra efforts are needed to understand the standardization process and changes made to the original 

datasets due to such a process. 

 

8. Changes in Historical Data 

Historical data can be revised due to the correction of errors or updates from restatement. But systematic 

changes in historic data can be a problem. Researchers used I/B/E/S analyst stock recommendations found 

date files for the same period downloaded at different times have substantial differences. The differences 

include recommendation levels, additions and deletions of records, removal of analyst names, and changes in 

the attributes of the earnings forecasts available in each version (Ljungqvist et al., 2008; Call et al., 2020). The 

seemingly not-random alterations raised concerns over data integrity (Brown-Humes, 2006). Changes in 

historical data can be very common due to the fluid nature of commercial databases, especially for data 

aggregators that acquire the data from other primary data sources. Changes in primary data providers, 

contributors, and contract terms can all lead to changes in databases. In the instances that a database gives data 

contributors direct controls over the databases, the changes are more likely to occur and hard to manage.   

 

9. Lack of Transparency 

Lack of transparency is a fundamental issue for many other data problems. Generally, database vendors are not 

transparent about their data collection and management practices, let alone warning researchers about 

potential data problems and biases (Annaert, et al., 2016). Researchers expressed concerns over the 

transparency of SDC data on how the data are collected or how the variables are defined (Netter et al., 2011). 

Although data issues were often not publicly explained, sometimes they are disclosed through private 

conversations between researchers and database providers. Being questioned about the changes of the historical 

data of individual analysts, I/B/E/S responded that the names of the individual analysts remain in the 

database, but they were not visible on the files seen by the academics due to an incomplete data feed (Brown-

Humes, 2006). When asked about the changes in historic earnings forecasts, I/B/E/S explained the 

retroactive adjustments may occur due to stock splits, stock dividends, default currency adjustments or 

correction of errors and further disclosed some differences occurred because the brokerage maintains control 

over the distribution of these forecasts and academic subscribers often have access to only a subset of all the 

earnings forecasts contributed to the database (Call et al., 2020). Despite the explanations from vendors, the 

lack of transparency concerns researchers and greatly affects researchers’ trust in commercial databases (Call et 

al., 2020). 

 

10. Reporting Time Issues 

Data reporting time can be a problem when database providers are not transparent about their data reporting 

time and update schedule. It can affect research when the dates that the data is available to the public are 

different from the date that a study assumes it is (McElreath & Wiggins, 1984). Improperly recorded 

reporting time can induce look-ahead bias (Andrikopoulos, et al., 2007). Reporting lag or delay is a different 

problem that sometimes is inevitable. In the case that the data are aggregated from different vendors, the 
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reporting lag may be caused by specific embargo contract terms. In the case that the data are sourced from 

different countries, reporting lag may also be caused by different reporting compliance practices in different 

countries (Green, 2003). The reporting lag in Orbis was found to be about 2 years on average and varied by 

country and by data product (Kalemli-Ozcan et al. 2019). The reporting lag due to incubation (when new 

funds with poor performance are not added to databases as promptly as new funds with superior 

performance) can result in selection bias (Wisen, 2002).  

 

11. Misuse of Data 

Data problems are not limited to data itself, researchers may sometimes improperly use the data as proxies or 

measurements. For example, the practice of compounding daily returns of the CRSP equal-weighted index to 

calculate monthly returns could lead to large biases (Canina et al., 1998). CRSP adjustment factors for share 

price have included the effects of property dividend, spin-off, and rights offering events, so researchers must 

only use the CRSP adjustment factors to accommodate events that lack such economic substance, otherwise, it 

may create erroneous sample observations and misleading results (Francis et al., 2016). Mills et al. (2003) 

warned researchers to take extra caution when using Compustat net operating loss data as an indicator of a 

firm’s US tax-loss positions, particularly when the research setting involves the firms with foreign operations 

or corporate acquisitions activity. Moreover, since Compustat only covers public firms in an industry, it is a 

poor proxy for actual industry concentration. Constructing industry concentration measures using Compustat 

data can lead to incorrect conclusions (Ali et al., 2008; Keil, 2017). Announcements of repurchases in SDC 

are poor predictors of the number of shares that will be repurchased by a firm, because the data is not 

complete (Banyi et al., 2008). 

 

Throughout the research, we found some of the data quality problems can be alleviated through the 

improvement in statistical testing methods, data profiling and mining techniques, and the adoption of new 

data reporting systems and policies. However, the improvement of overall data quality largely depends on 

transparent quality control practices of data providers and their open engagement with the research 

community. 

 

Implications for Business Reference and Research Consultation 

 

Helping library users and researchers understand information quality is an essential part of library reference 

services. Librarians have paid special attention to the information quality dimensions such as reliability, 

validity, accuracy, authority, timeliness, and biases (ACRL, 2000). We also developed practical approaches 

such as the CRAAP (Currency, Relevance, Authority, Accuracy, and Purpose) test to facilitate information 

literacy education (Blakeslee, 2004). However, this research finds the data quality problems can be much more 

complicated and troubling. Business librarians need to be aware of these data quality problems and raise 

researchers’ awareness of these problems through business reference and consultation. Below is some practical 

advice that we can provide to researchers. 
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• Researchers should not take the quality of the reputable commercial databases for granted. They 

should always evaluate data quality and check its accuracy and completeness. They need to use caution 

with projects studying complex accounting concepts or business transactions, or projects involving 

new firms, small firms, foreign firms, or delisting firms. 

• Researchers should not solely rely on a single data source. If possible, they should consult multiple 

sources, especially the original data sources. They should pay attention to the different definitions and 

coding policies of different databases and consider the discrepancies between databases as an 

opportunity to identify missing values or data errors. They should err on the side of caution for the 

“database effect” and test their theories through multiple data sources.  

• Researchers should carefully read the data manuals and understand how the data is defined or 

calculated, especially for standardized or adjusted data. They should be aware of the inconsistencies of 

the database in treating such definitions and adjustments across financial statements, historical 

periods, and throughout the database. 

• Researchers should be cautious of using databases as a screening tool to identify data samples, 

especially using the static header data field as a variable to screen data samples. They need to assess if 

the sample data are proper proxies or measurements. The incomplete data and incorrect classifications 

in databases may cause missing or incorrect records in data samples or even induce selection bias and 

misleading results.  

• Researchers should not ignore the biases in databases. Instead, they need to seek proper procedures to 

mitigate the biases and clearly explain the impact of potential biases and the limitations of their 

research.  

• Researchers should not treat data acquisition as a one-time transaction. Instead, they need to 

understand the fluid nature of a research database, preserving the data at different points in time, and 

leaving a paper trail of data access and usage. 

• Researchers need to be cognizant of the reporting time, reporting lag, update schedule, or embargo 

period of the data sources. They may need to adjust their data retrieval or update practices 

accordingly. 

• Researchers should keep open communications with vendors on data problems. Their communication 

will allow the vendors to identify similar problems or initiate projects to make large scale changes.  

 

Conclusions 

 

This article provides a literature review on business and financial literature that addresses data quality 

problems and covers the databases including CRSP, Compustat, Capital IQ, I/B/E/S, Datastream, 

Worldscope, SDC, and BvD Orbis. The synthetic analysis on the business literature identified 11 categories 

of common data quality problems, which include missing values, data errors, discrepancies, biases, 

inconsistencies, static header data, standardization, changes in historic data, lack of transparency, reporting 

time issues and misuse of data. These data problems can in many ways introduce errors and biases into 

empirical research, polluting statistical analysis, and distort research results. Many researchers have overturned 
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prior research results after correcting specific data problems. Despite the prevalence of data quality problems, 

these databases are widely used by academic researchers to conduct empirical studies in accounting, finance, 

economics, math, and statistics, by the commercial market for backtesting and modeling calculations, and by 

government agencies for financial and economic analysis. Academic research has long been trusted as a reliable 

way to create knowledge and achieve scientific and theoretical advances in related areas. Evidence-based and 

data-driven decision making has been widely applauded as a more reliable decision practice. The data quality 

problems will not only undermine the value of academic research, mislead business decisions, confound 

government policies but also damage public trust in knowledge. Librarians have played a crucial role in 

assisting the research community in accessing data sources and educating researchers. Hopefully, this article 

will help facilitate librarians’ communication with researchers on data quality problems and will raise 

awareness of the research community in this regard. 

  

 

Appendix I List of Reviewed Articles 

Article (Author-Date) Journal Title Summary   
(provided for the database with over five cited  
articles.) 

Center for Research in Security 
Prices (CRSP) 

    

Rosenberg and Houglet (1974) The Journal of Finance Period Coverage: Number of Articles 

Beedles and Simkowitz (1978)  The Journal of Finance 1970-1999: 12 

Bennin (1980)  The Journal of Finance 2000-2009: 4 

Grinblatt et al. (1984)  Journal of Financial Economics 2010-2019: 5 

Sarig and Warga (1989)  Journal of Financial and Quantitative Analysis Journal Coverage: Number of Articles 

Guenther and Rosman (1994)  Journal of Accounting and Economics The Journal of Finance: 9 

Courtenay and Keller (1994)  The Accounting Review Social Science Research Network (SSRN): 4 

Loughran and Ritter (1995)  The Journal of Finance Journal of Financial and Quantitative Analysis: 2 

Kahle and Walkling (1996) Journal of Financial and Quantitative Analysis Journal of Financial Economics: 1 

Shumway (1997)  The Journal of Finance The Accounting Review:1 

Canina (1998)  The Journal of Finance The Review of Financial Studies: 1 

Shumway and Warther (1999)  The Journal of Finance Journal of Accounting and Economics: 1 

Elton et al. (2001)  The Journal of Finance  Working Paper: 1 

Wisen (2002)  SSRN Manuscript: 1 

Evans (2007)  Manuscript Total: 21 

Yan (2007)  SSRN   

Evans (2010) The Journal of Finance   

Schwarz and Potter (2016)  The Review of Financial Studies   

Francis et al. (2016)  SSRN   

Jorion and Schwarz (2017)  SSRN   

Tobek and Hronec (2018)  IES Working Paper   

Compustat      

San Miguel (1977)  The Accounting Review Period Coverage: Number of Articles 

Ball (1979)  The Journal of Finance 1970-1999: 6 

McElreath and Wiggins (1984)  Financial Analysts Journal 2000-2009: 6 
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Banz and Breen (1986)  The Journal of Finance 2010-2019: 15 

Kinney and Swanson (1993)  The Journal of the American Taxation 
Association 

2020- : 1 

Kern and Morris (1994) The Accounting Review Journal Coverage: Number of Articles 

Mills et al. (2003)  The Journal of the American Taxation 
Association 

SSRN: 5 

Yang et al. (2003)  Industrial Management & Data Systems The Journal of Finance: 2 

Ulbricht and Weiner (2005)  SSRN  Accounting Horizons: 2 

Ali et al. (2008)  The Review of Financial Studies The Accounting Review: 2 

Banyi et al. (2008)  Journal of Corporate Finance Journal of Corporate Finance: 2 

Tallapally (2009)  Dissertation Journal of Financial Reporting: 2 

Tallapally et al. (2011) Review of Business Information Systems  The Journal of the American Taxation 
Association: 2 

Shi and Zhang (2011)  Accounting Horizons Dissertation: 2 

Tallapally et al. (2012) Manuscript Accounting, Organizations and Society: 1 

Boritz and No (2013) SSRN  Advances in Accounting: 1 

Chychyla and Kogan (2014) SSRN  Financial Analysts Journal: 1 

Williams (2015) Dissertation Industrial Management & Data Systems: 1 

Chychyla and Kogan (2015)  Journal of Information Systems Journal of Information Systems: 1 

Bratten et al. (2016) Accounting, Organizations and Society Journal of International Management: 1 

Bostwick et al. (2016)  Accounting Horizons Review of Business Information Systems: 1 

McGuire et al. (2016)  Journal of International Management The Review of Financial Studies: 1 

Casey et al. (2016)  Journal of Financial Reporting Manuscript: 1 

Hribar (2016)  Journal of Financial Reporting Total: 28 

Keil (2017)  Journal of Corporate Finance   

Utke (2018)  Advances in Accounting   

Casey et al. (2019)  SSRN    

Heitzman and Lester (2020)  SSRN    

I/B/E/S     

Payne and Thomas (2003)  The Accounting Review Period Coverage: Number of Articles 

Ljungqvist et al. (2008)  The Journal of Finance 2000-2009: 3; 2010-2019: 3; 2020 - : 1 

Acker and Duck (2009) SSRN Journal Coverage: Number of Articles 

Brown and Larocque (2011; 2013)  The Accounting Review SSRN: 2 

Roger (2017) Finance Research Letters The Accounting Review: 2 

Call et al. (2020)  SSRN The Journal of Finance: 1 

    Finance Research Letters: 1 

    Total: 6 

Datastream      

Bloom et al. (2004)  Manuscript Period Coverage: Number of Articles 

Ince and Porter (2006)  Journal of Financial Research 2000-2009: 5; 2010-2019: 5 

Lara et al. (2006) Abacus Journal Coverage: Number of Articles 

Andrikopoulos et al. (2007) Occasional Paper Series Paper SSRN: 2 

Espenlaub et al. (2009) European Journal of Finance Working Paper: 2 

Rossi (2011)  Working Paper Journal of Financial Research: 1 

Brückner (2013)  SSRN Abacus: 1 

Landis and Skouras (2018)  SSRN Occasional Paper Series Paper: 1 
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Tobek and Hronec (2018)* IES Working Paper European Journal of Finance: 1 

Nobes and Stadler (2018)  The British Accounting Review The British Accounting Review: 1 

    Manuscript:1 

    Total: 10 

Worldscope     

Firat et al. (2002) MIT Working Paper Period Coverage: Number of Articles 

Acker and Duck (2009)* SSRN 2000-2009: 3; 2010-2019: 4 

Ulbricht and Weiner (2005)* SSRN  Journal Coverage: Number of Articles 

Daske et al. (2013)  Journal of Accounting Research SSRN: 2 

Weiß and Mühlnickel (2014)  Journal of Financial Stability Working Paper: 1 

McGuire et al. (2016)* Journal of International Management Journal of Accounting Research: 1 

Nobes and Stadler (2018)* The British Accounting Review Journal of Financial Stability: 1 

    Journal of International Management: 1 

    The British Accounting Review: 1 

    Total: 7 

SDC Platinum     

Faccio and Masulis (2005)  The Journal of Finance Period Coverage: Number of Articles 

Boone and Mulherin (2007)  The Review of Financial Studies 2000-2009: 4; 2010-2019: 6 

Banyi et al. (2008)* Journal of Corporate Finance Journal Coverage: Number of Articles 

Chapman and Klein (2009)  SSRN Journal of Corporate Finance: 2 

Netter et al. (2011)  The Review of Financial Studies The Review of Financial Studies: 2 

Barnes et al. (2014)  The Financial Review The Financial Review: 1 

Bollaert and Delanghe (2015)  Journal of Corporate Finance The Journal of Finance: 1 

Mulherin and Aziz Simsir (2015)  Financial Management Financial Management: 1 

Betton (2018) International Review of Financial Analysis SSRN: 1 

Ritter (2016, 2019, 2020) Manuscript International Review of Financial Analysis 

    Manuscript: 1 

    Total: 10 

Bureau Van Dijk (BvD) Orbis      

Jaraitė et al. (2013)  SSRN   

Didier et al. (2015)  NBER Working Paper   

Monasterolo et al. (2017)  Climatic Change   

Hintermann and Ludwig (2019)  University of Basel Working Paper   

Kalemli-Ozcan et al. (2019)  NBER Working Paper   

Capital IQ     

Benedettini et al. (2013)  Cambridge Service Alliance News   

Mathers and Giacomini (2016)  The Financial Review   

Lee (2017) Conference Paper   

VentureXpert data (via Eikon or 
Thomson One)  

    

Gornall and Strebulaev (2015)  SSRN   

Kaplan and Lerner (2016)  NBER Working Paper   

Röhm et al. (2019)  Finance Research Letters   

Thomson Mutual Fund Holdings 
Dataset  
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Schwarz and Potter (2016)* The Review of Financial Studies   

Zhu (2020)  Management Science   

Mergent Online     

Tallapally (2009)* Dissertation   

Ma et al. (2011)  Electronic Commerce Research and 
Applications 

  

Berrios (2013) Journal of Business and Finance Research   

Lu and Shang (2017)  Journal of Operations Management   

Value Line     

Kern and Morris (1994)* The Accounting Review   

Anderson and Lee (1997) Journal of Financial and Quantitative analysis  

Yang et al. (2003)* Industrial Management & Data Systems   

Ramnath et al. (2005) International Journal of Forecasting   

Zhang and Alexander (2016) Managerial Finance   

Reference USA     

Cook et al. (2012) Journal of Business & Finance Librarianship   

Database from Foreign Countries     

Suret et al., (1998) Asia-Pacific Journal of Accounting   

Olbrys and Majewska (2014) Pensee Journal   

Nam et al. (2017) Sustainability   

* indicates that the article reviews multiple databases and has a duplicate record. 
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