
West Chester University
Digital Commons @ West Chester University

Biology Faculty Publications Biology

2012

Cytoplasmic sequestration of the tumor suppressor
p53 by a heat shock protein 70 family member,
mortalin, in human colorectal adenocarcinoma cell
lines
Erin E. Gestl
West Chester University of Pennsylvania, egestl@wcupa.edu

S. Anne Boettger
West Chester University of Pennsylvania, sboettger@wcupa.edu

Follow this and additional works at: http://digitalcommons.wcupa.edu/bio_facpub

Part of the Cancer Biology Commons

This Article is brought to you for free and open access by the Biology at Digital Commons @ West Chester University. It has been accepted for
inclusion in Biology Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please
contact wcressler@wcupa.edu.

Recommended Citation
Gestl, E. E., & Boettger, S. A. (2012). Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family
member, mortalin, in human colorectal adenocarcinoma cell lines. Biochemical and Biophysical Research Communications, 423(2),
411-416. http://dx.doi.org/http://dx.doi.org/10.1016/j.bbrc.2012.05.139

http://digitalcommons.wcupa.edu?utm_source=digitalcommons.wcupa.edu%2Fbio_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/bio_facpub?utm_source=digitalcommons.wcupa.edu%2Fbio_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/bio?utm_source=digitalcommons.wcupa.edu%2Fbio_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/bio_facpub?utm_source=digitalcommons.wcupa.edu%2Fbio_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.wcupa.edu%2Fbio_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/http://dx.doi.org/10.1016/j.bbrc.2012.05.139
mailto:wcressler@wcupa.edu


Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein
70 family member, mortalin, in human colorectal adenocarcinoma cell lines

Erin E. Gestl 1, S. Anne Böttger ⇑
Department of Biology, West Chester University, 750 S Church Street, West Chester, PA 19383, USA

a r t i c l e i n f o

Article history:
Received 25 May 2012
Available online xxxx

Keywords:
Tumor suppressor
Non-mutational inactivation
Heat shock proteins
Mortalin
Colorectal adenocarcinoma

a b s t r a c t

While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms
responsible for this retention have not been positively identified. Since heatshock proteins like mortalin
have been associated with p53 inactivation in other tumors, the current study sought to characterize this
potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one
with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize
their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the
cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear
p53 was only observed in HCT-116 40–16, LS123, and HT-29 cell lines. Mortalin was only localized in the
cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and
mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40–16
and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo,
implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm.
Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines
with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels com-
pared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestra-
tion of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the
case for other cancers, such as glioblastomas and hepatocellular carcinomas.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Colorectal carcinomas are the second leading cause of cancer
deaths in Western countries directly following lung cancer. Carci-
noma patients display the worst prognosis for colorectal adenocar-
cinomas when the tumor suppressor p53 is retained and thereby
inactivated in the cytoplasm [1,2]. The tumor suppressor p53, a
transcriptional regulatory protein [3–5], is involved in detection
of cellular DNA damage, entry into the cell cycle, apoptosis and
maintenance of genomic stability [6]. While p53 protein is present
in normal cells in such low quantities that it is virtually undetect-
able by immunohistochemistry (IHC) [7–10], the wildtype TP53
gene for the p53 protein may become mutated during carcinogen-
esis in different tumors to display non-sense point mutations and
increase protein quantities and subsequently immunoreactivity
[2,5]. Though accumulation of mutated tumor suppressors and
oncogenes is the leading cause for cancer development [11],
functional p53 protein is also inactivated through several other

mechanisms including binding to viral or cellular products [12–
14], inefficient nuclear transport [15], and conformation and trans-
lational status changes [16,17]. All aberrations can additionally
lead to conformational changes of p53 and subsequent stabiliza-
tion of the protein making it detectable [6], removing its regulatory
influence on cell proliferation thus conferring growth advantages
[13] and pre-disposing cells to further genetic mutations, including
mutations that lead to inactivation of TP53.

The mitochondrial heat shock protein mortalin was originally
discovered in embryonic mouse fibroblasts, where two forms were
isolated, mot-1 and mot-2, differing in two amino acids. Mot-1 was
found throughout the cytoplasm, while mot-2 was detected in the
perinuclear region of immortal cells. A single human homologue of
mortalin (HSPA9) was identified, resulting in a 679 amino acid pro-
tein with a molecular weight of 73.9 kD associating it with the
Hsp70 proteins. Functions attributed to mortalin include energy
generation, stress response, carcinogenesis and involvement in
aging-associated diseases [18–21]. In addition, mortalin and its
ability to bind cytoplasmic p53 in a number of vertebrate cells sug-
gest that it also operates as a chaperone [22–25]. In normal human
cells, cytoplasmic mortalin binds to p53 resulting in the delivery of
the tumor suppressor to the nucleus, as a response to stress [26–
28]. However, during severe stress, wild-type p53 protein also

0006-291X/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.bbrc.2012.05.139

⇑ Corresponding author. Fax: +1 610 436 2183.
E-mail addresses: egestl@wcupa.edu (E.E. Gestl), aboettger@wcupa.edu (S. Anne

Böttger).
1 Fax: +1 610 436 2183.

Biochemical and Biophysical Research Communications xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc

Please cite this article in press as: E.E. Gestl, S. Anne Böttger, Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family
member, mortalin, in human colorectal adenocarcinoma cell lines, Biochem. Biophys. Res. Commun. (2012), http://dx.doi.org/10.1016/j.bbrc.2012.05.139

http://dx.doi.org/10.1016/j.bbrc.2012.05.139
mailto:egestl@wcupa.edu
mailto:aboettger@wcupa.edu
http://dx.doi.org/10.1016/j.bbrc.2012.05.139
http://www.sciencedirect.com/science/journal/0006291X
http://www.elsevier.com/locate/ybbrc
http://dx.doi.org/10.1016/j.bbrc.2012.05.139


interacts with Bcl-2 (B-cell lymphoma 2, an apoptosis regulator
protein) in the outer mitochondrial membrane subsequently
resulting in non-transcriptionally activated apoptosis [29]. Overex-
pression of mortalin leads to permanent tethering of p53 protein in
the cytoplasm [30,31], a phenomenon referred to as cytoplasmic
sequestration in human and mouse cells. As a result, p53/mortalin
complexes cannot be translocated to either the nucleus or the
mitochondria. These outcomes block not only the transcriptional
function of p53, but also its non-transcriptional activity in the
mitochondrion thus preventing cell repair or apoptosis. This phe-
nomenon has been observed in an unrelated group of human can-
cers, including undifferentiated neuroblastomas [12,15,32] but has
not been verified for colorectal adenocarcinomas [33]. Increased
mortalin levels have been reported in several cancers including
leukemias, liver cancer metastasis, and brain tumors. In fact, over-
expression of mortalin has been found to be indicative of a pa-
tient’s poor prognosis as well as a predictor of tumor recurrence.

In this study, mortalin and p53 protein levels were analyzed in
eight colorectal adenocarcinoma cell lines. Cytoplasmic sequestra-
tion and retention of p53 as well as the interaction and binding of
mortalin with p53 was characterized for the first time in four ade-
nocarcinoma cell lines. Targeting this specific mechanism of p53
inactivation, could be a therapeutic approach leading to reactiva-
tion of p53 and subsequent apoptosis of tumor cells.

2. Materials and methods

2.1. Cell lines and maintenance

Eight colorectal adenocarcinoma cell lines were selected based
on their p53 status and cytogenetic analysis. HCT-8, HCT-15,
LS123 and LoVo cells were purchased from ATCC. The HT-29 cells
were a gift from Dr. Kristin Eckert (Jake Gittlen Cancer Research
Institute, Penn State University, Hershey PA), while the three frac-
tions of the HCT-116 cell line were a gift from Dr. Bert Vogelstein
(Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Uni-
versity, Baltimore MD). The HCT-116 cell line fractions differed in
their p53 status, 40–16 was wild-type (+/+, parent cell line), 386
was heterozygous (+/�), and 379.2 p53 deficient (�/�).

HCT-8 and HCT-15 were cultured in RPMI media containing 10%
FBS with the HCT-15 cells also receiving 1 mM sodium pyruvate.
LS123 was cultured in ATCC-formulated Eagles’ Minimum Essen-
tial media (#30–2003). The remaining cell lines were cultured in
DMEM/F12 media with 10% FBS and all cell lines were grown at
37�C with 5% CO2.

2.2. Primary antibodies

All antibodies were examined at the start of the experiment for
their effectiveness in the HCT-116 parent cell line used in the cur-
rent studies (results not shown). Primary antibodies for immuno-
histochemistry, protein localizations through Western blots and
co-immunoprecipitation were: A) p-53 (DO-1, mouse anti-human
monoclonal, Santa Cruz Biotechnology, catalogue number sc-
126), B) mortalin (Grp75, mouse anti-human monoclonal, Thermo
Scientific Pierce, catalogue number MA3–028), C) b-actin (mouse
anti-human monoclonal, Santa Cruz Biotechnology, catalogue
number sc-47778, used as a cytoplasmic loading control) and D)
lamin A/C (mouse anti-human monoclonal, Santa Cruz Biotechnol-
ogy, catalogue number sc-7292, used as a nuclear loading control).

2.3. Immunohistochemistry and protein localization

Cytospins of 60 ll of freshly collected cells (diluted 1:1 in PBS)
from all cell lines were fixed and permeabilized by immersion in

equal amounts of acetone and methanol. Resulting preparations
were incubated in primary antibodies (1:50 ll primary anti-
body:PBS) and developed with the appropriate peroxidase-labeled
secondary antibody (Vectastain ABC Elite IgG kit, Vector Laborato-
ries) followed by treatment with DAB. Control cytospins received
identical treatment, however, lacking the primary antibodies.

To determine the distribution of p53 protein between the nu-
cleus and cytoplasm, one 100 mm plate at approximately 80% con-
fluence of each cell line was used to collect cells and isolate nuclear
and cytoplasmic proteins using an NE-PER kit (Thermo Scientific
Pierce) according to the manufacturer’s instructions. Total protein
was determined using the colorimetric BioRad DC Protein Assay.
Distribution of p53 and mortalin proteins in the nuclear and cyto-
plasmic fractions were determined by electrophoresis using 4–15%
Tris–HCl precast Mini Protean� TGX™ gels (BioRad), followed by
blotting onto PVDF membranes (BioRad), treatment with the
monoclonal primary and secondary anti-mouse antibodies and
visualization using Western Blue� (Promega). All experimental
lanes were loaded with 20 lg total protein, lanes displaying stan-
dards were loaded with 10 ll Precision Plus Protein™ Dual Color
Standard (BioRad). Loading controls (stained with b -actin primary
antibody for cytoplasmic and lamin A/C primary antibody for nu-
clear samples) were conducted for all cytoplasmic and nuclear pro-
tein extracts.

2.4. Co-immunoprecipitation of p53 and mortalin

Co-immunoprecipitation (Co-IP) of p53 and mortalin was
accomplished using an antibody-coupling gel to precipitate the
‘‘bait’’ protein and co-immunoprecipitate the interacting ‘‘prey’’
protein. Anti-p53 (DO-1) and in a separate reaction anti-mortalin
(Grp75) were coupled to amine-reactive resin (ProFound™ Co-
Immunoprecipitation Kit, Pierce) using slow agitation at 22 �C for
3 h. Cytoplasmic lysates for all cell lines (diluted to 100 ll and con-
taining 50 ug total protein) were incubated with the different anti-
body-coupled gels in separate spin-columns. Two negative controls
were also prepared, a ‘‘control’’ gel that utilized an inactivated
form of the resin and a ‘‘quenched’’ gel, in which a quenching buf-
fer was applied in place of the antibody. Both negative controls
were incubated with a cytoplasmic protein from the HCT-116
40–16 (parent cell line) and processed alongside the treatments
in an otherwise identical manner. The first elution following anti-
body conjugation and the first three elutions from each Co-IP were
stored for Western Blot analysis, the former to establish proper
antibody conjugation (not shown), the latter to evaluate p53-mort-
alin binding. Elutions were separated by electrophoresis on a 4–
15% Tris–HCl precast Mini Protean� TGX™ gel, transferred to a
PVDF membrane and probed with the coupling antibody first to
ensure presence of ‘‘bait’’ protein followed by probing with the
prey antibody. Bands for mortalin and p53 were visualized using
anti-mouse alkaline phosphatase antibody and Western Blue�

(stabilized substrate for alkaline phosphatase, Promega).

2.5. RNA isolation and quantitative RT-PCR

To document expression of HSPA9 and TP53, 100 mm plates of
the colorectal cell lines were collected and RNA extracted using
Trizol (Life Technologies, Invitrogen�) as per the manufacturer’s
instructions. Synthesis of cDNA was completed using 2 lg of total
RNA with the SuperScript™ First-Strand Synthesis System (Life
Technologies, Invitrogen�). All samples were prepared for
qRT-PCR using TP53 (#Hs01034249_m1) and HSPA9
(#Hs00269818_m1) Taqman� primers and probes (Life Technolo-
gies, Applied Biosystems�). The GAPDH gene (#Hs0275899_g1)
was utilized as a baseline for comparison among the different cell
lines. All reactions were run in a Stratagene Mx3005P thermal
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cycler (Agilent Technologies) utilizing the following program,
10 min at 95 �C, followed by 40 cycles of 30 s at 95 �C and 60 s at
60 �C.

3. Results

3.1. Protein localization in all cell lines

Localization of p53 was verified in the cell cytoplasm of cell
lines LS123, HCT-15, HCT-116 40–16, HCT-116 386, LoVo and
HT-29 (Table 1, Fig. 1A). Staining with primary antibody actin
was conducted to verify separation of cytoplasmic and nuclear pro-
tein fractions (Fig. 1B). In addition, p53 was also located in the nu-
cleus of LS123, HCT-116 40–16 and HT-29 (Table 1, Fig. 1C). Lamin
A/C served as a nuclear standard to verify successful protein sepa-
ration between nucleus and cytoplasm (Fig. 1D).

Mortalin was detected in the cell cytoplasm of all cell lines but
never in the nuclear extracts (Fig. 1E). Using colorimetric IHC tech-
niques, both p53 and mortalin displayed a punctate localization
within all cell lines (Fig. 2A–D), with the exception of HCT-8 and
HCT-116 397.2 (p53 deficient) that lacked p53 localization but dis-
played regular mortalin localization. Localization of p53 was not
consistently present in all cells visualized through
immunohistochemistry.

3.2. Co-immunoprecipitation of mortalin and p53

Western blot analysis of the wash following antibody coupling
revealed absence of the DO-1 and Grp75 antibodies in the wash,
indicating that the antibody/resin coupling was fully successful.
The ‘‘bait’’ proteins, p53 and mortalin respectively, were localized
in all eludes, which served as a control to ensure successful capture
of the bait protein. With p53 as ‘‘bait’’ protein mortalin co-localiza-
tion and binding was observed in the tumorigenic cell lines HCT-
116 40–16, HCT-116 386, HT-29 (not shown), LS123 and LoVo
(Fig. 3A). Co-localization and binding for the same cell lines was
confirmed with mortalin as the ‘‘bait’’ (Fig. 3B).

3.3. Quantitative gene expression

Gene expression of HSPA9 was higher when compared to TP53
gene expression in all cell lines. The cell lines displaying cytoplas-
mic sequestration of p53 by mortalin (HCT-116 40–16, HCT-116
386, HT-29, LoVo and LS123) displayed higher TP53 gene expres-
sion levels than the cell lines without cytoplasmic sequestration
of p53. When standardized to levels of GAPDH expression, the
resulting HSPA9:TP53 ratios for cell lines with cytoplasmic seques-
tration of p53 by mortalin were the lowest evaluated (Fig. 2E) with

the exception of the HCT-116 386 (heterozygous) cell line. HT-29,
LoVo, LS123 and both HCT-116 fraction displayed the lowest
HSPA9:TP53 ratios, significantly lower compared to cell lines lack-
ing p53 sequestration (p < 0.001; HCT-8 and HCT-15).

4. Discussion

With nuclear and cytoplasmic protein fractions successfully
separated, mortalin was detected exclusively in the cytoplasmic
fractions of all the colorectal carcinoma cell lines while p53 was
detected in the cytoplasmic fraction of six of the eight cell lines.
Exceptions were the cytoplasmic fractions of p53 wild-type cell
line (HCT-8) and the p53 deficient cell line (HCT-116 397.2). p53
was also detected in the nuclear fraction of HT-29, LS123 and
HCT-116 40–16 (parent cell line). Wild-type p53, has previously
been reported in HCT-8 and LoVo in low quantities non-detectable
by protein detection methods such as IHC and Western blotting [7–
10]. The reason for lack of p53 detection in HCT-8 cells in this study
may therefore be a result of levels of p53 protein below detection
rather than an inefficient antibody, as DO-1 has been used to detect
wild type and mutant p53 in a variety of other tumors [15,34–36].
The LoVo cell line, having wild-type p53, also displayed cytoplas-
mic sequestration and binding of p53 by mortalin. The reason for
evidence of p53 staining in LoVo may be the stabilization and
hence overexpression of the p53 protein, not by mutation, but
due to retention of p53 in the cytoplasm as a result of tethering
by another protein [13,37] such as mortalin.

HCT-116 40–16, HT-29, LS123 and LoVo cell lines displayed an
approximate 50% increase in HSPA9 expression compared to other
adenocarcinoma cells. Increased levels of HSPA9 expression have
been detected in several cancers including brain tumors and hepa-
tocellular carcinomas [31,38,39]. The increased TP53 expression in
the cell lines displaying cytoplasmic sequestration may be due to
the p53 not reaching its desired target thus not turning off the
intracellular signal to increase transcription of TP53 to compensate
for the lack of functional activity. Proteomic profiling of matched
tumor and non-tumor tissues from patients with hepatocellular
carcinoma revealed a 1.8-fold increase in HSPA9 expression. A sim-
ilar increase in HSPA9 expression was detected, at both the protein
and RNA levels, when comparing those patient samples which had
an early recurrence to those that were disease free after one year
indicating the use of HSPA9 as a potential prognostic biomarker
[39]. Therefore, upregulation of HSPA9 expression has been sug-
gested to aide in tumorigenesis [31,40,41], since increases in
HSPA9 could lead to increased amounts of mortalin protein which
can directly interact with and inappropriately bind the tumor sup-
pressor p53. Cytoplasmic tethering of p53 by mortalin has previ-
ously been reported in undifferentiated neuroblastoma cells [33]

Table 1
Colorectal Adenocarcinoma Cell Line Characteristics and p53 Distribution.

Cell Line Tumorigenicity p53 Status Cytogenetic Base Media p53 Distribution Cyto/
Nuc

LS123 Yes, Duke’s type B Yes, Arg > His at 175 Modal 63, Range 54–70 Eagle’s
MEM

+/+

LoVo Yes, Duke’s type C, grade
IV

Yes, wild-type Hyperdiploid Modal number at 49 DMEM/F12 +/�

HCT-8 Yes Yes, wild-type Unknown RPMI 1640 �/�
HCT-116; 40–

16
Yes Yes, Wildtype Near diploid, modal number at 45, 6.8 n%

polyploids
DMEM/F12 +/+

HCT-116; 386 Yes Yes, +/�, p53
heterozygous

Near diploid DMEM/F12 +/-

HCT-116;
379.2

Yes No, �/�, p53 deficient Near diploid DMEM/F12 �/�

HCT-15 Yes, Duke’s type C Yes, +/�Pro > Ala at 153 Quasidiploid Modal 46 in 76% RPMI-1640 +/�
HT-29 Yes Yes, Arg > His at 273 Hypertriploid, modal number 71, range 68–72 DMEM/F12 +/+
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and in primary and secondary glioblastomas (with possible
involvement of other tethering molecules e.g., cullin 7 or PARC)
[42,43] when mortalin is over-expressed. In addition to HSPA9,
hsp27 has been shown to be upregulated in head and neck squa-
mous cancer cells as well as some melanomas [44,45]. Mortalin
overexpression in the cell lines examined could enhance tumori-
genesis through direct interaction with p53. Sequestration of tu-
mor suppressors in the cytoplasm would prevent the apoptotic
pathway as observed in fou of the eight examined cell lines

(HCT-116 parent and heterozygous fractions, HT-29, LS123 and
LoVo).

The involvement of mortalin and other heatshock proteins in
both cancer and aging-related diseases is an important area of re-
search that may result in a therapy for these conditions. The find-
ings in this study confirm for the first time the interaction between
mortalin and p53 in four out of eight colorectal carcinoma cell
lines. Our results also suggest that therapies that disrupt the
p53/mortalin interaction in cancers should be explored further

Fig. 1. p53 and mortalin cellular distribution. Protein distribution is displayed separately for p53 (A) cytoplasmic distribution (positive for cell lines HCT-15, HT-29, LoVo,
LS123 and HCT-116 40–16 and 386), (B) cytoplasmic loading control (actin), (C) nuclear distribution (positive for cell lines HT-29, LS123 and HCT-116 40–16), (D) nuclear
loading controls (lamin A/C) and (E) concurrently for nuclear and cytoplasmic distribution of mortalin (cell line examples, all cell lines displayed only cytoplasmic distribution
of mortalin).

Fig. 2. p53 and mortalin localization, distribution and expression. (A) negative (untreated by DO-1 primary antibody) control, (B) p53 distribution (arrow), (C) mortalin
distribution (arrow), (D) nuclear to cytoplasmic ratio and overall cellular outline (nuclear methylene blue stain) and (E) HSPA9 and TP53 gene expression ratios standardized
using the housekeeping gene GAPDH. Scale bars = 10 lm; a, b and c referring to significant difference between groups.
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for colorectal adenocarcinomas as they may allow normal localiza-
tion and function of p53 to be re-established, resulting in activa-
tion of downstream genes allowing apoptosis to occur and
reduce cancer burden.
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