West Chester University Digital Commons @ West Chester University

Mathematics Student Work

Mathematics

4-17-2024

An Augmented Matched Interface and Boundary (AMIB) Method for Solving Problems on Irregular 2D Domains

Benjamin Pentecost

Follow this and additional works at: https://digitalcommons.wcupa.edu/math_stuwork Part of the Partial Differential Equations Commons

Improved Augmented Matched Interface and Boundary (AMIB) Method for Solving Problems on Irregular 2D Domains

Benjamin Pentecost bp957721@wcupa.edu

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

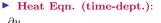
▲ □ ▶ ▲ □ ▶ ▲

Improved AMIB Method

1/13

§AMIB Method

§Numerical Results

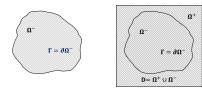

Mathematical Models

▶ Poisson Eqn. (time-indept.):

$$\Delta u + ku = f(\vec{x}), \qquad (1.1)$$

Boundary Condition:

$$\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \phi(\vec{x}), \qquad (1.2)$$


$$\frac{\partial u}{\partial t} = \beta \Delta u + g, \quad 0 \le t \le T, \quad (1.3)$$

Boundary Condition:

$$\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \psi(t, \vec{x}), \text{ on } \Gamma, \quad (1.4)$$

Initial Condition:

$$u(0, \vec{x}) = u_0(\vec{x}), \tag{1.5}$$

・ロト ・ 同ト ・ ヨト ・ ヨ

April 17, 2024 Department of Mathematics West Chester University of Pennsylvan Benjamin Pentecost Improved AMIB Method 2/13

§AMIB Method

 $\substack{\text{§Numerical Results}\\00000}$

Applications

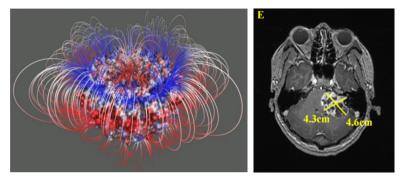
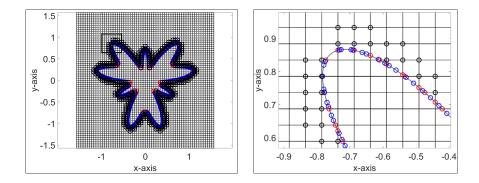
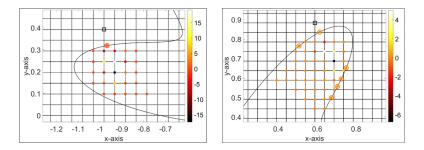


Figure: Poisson–Boltzmann eqn. for electrostatic potential distribution over a protein.


Figure: Pennes Bioheat eqn. for heat dissipation in Magnetic Fluid Hyperthermia (MFH).

・ロト ・日 ・ ・ ヨ ・ ・

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania Benjamin Pentecost Improved AMIB Method 3/13


Image: A matching of the second se

Interface Points, Fictitious Points, and Vertical Points

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania Benjamin Pentecost Improved AMIB Method 4/13

Fictitious Value Representations at Fictitious Points

$$\tilde{u}_{\rm FP} = \sum_{(x_I, y_J) \in S_{\rm FP}} \check{w}_{\rm I,J} u_{\rm I,J} + \sum_{\vec{x}_{\rm VP_i} \in V_{\rm FP}} \check{w}_{\rm VP_i} \phi(\vec{x}_{\rm VP_i}), \tag{2.1}$$

where $S_{\rm FP}$ is a set of chosen grid points and $V_{\rm FP}$ is a set of vertical points.

	April 17, 2024 Department of	f Mathematics	West Chester University of Pennsylvania
Benjamin Pentecost	Improved AMIB Method	5/13	

The Augmented System

$$\begin{pmatrix} A & B \\ C & I \end{pmatrix} \begin{pmatrix} U \\ Q \end{pmatrix} = \begin{pmatrix} F \\ \Phi \end{pmatrix}, \qquad (2.2)$$

Let N_1 = number of interior grid points, N_2 = number of interface points, we have:

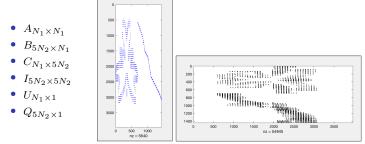


Figure: Nonzero entries of B and C.

	April 17, 2024	Department of	of Mathematics	West Chester University of Pennsylvania
Benjamin Pentecost	Improved A	MIB Method	6/13	

The "starfish" Interface (Poisson Eqn.)

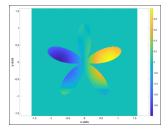


Figure: Numerical solution of the "starfish" interface.

$[N_x, N_y]$	L^{∞}		L^2		BCG
	error	order	error	order	iter no.
[65, 65]	1.91E-06		6.11E-07		37
[129, 129]	1.19E-07	4.00	4.55E-08	3.75	44
[257, 257]	5.01E-09	4.57	9.94E-10	5.52	47
[513, 513]	2.86E-10	4.13	5.63E-11	4.14	51

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	April 17, 2024 Department o	of Mathematics	West Chester University of Pennsylvania
Benjamin Pentecost	Improved AMIB Method	7/13	

The "butterfly" Interface (Heat Eqn.)

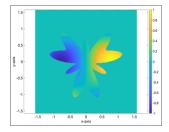


Figure: Numerical solution of the "butterfly" interface.

$[N_x, N_y]$	L^{∞}		L^2		BCG	
[- / 3]	error	order	error	order	time (sec)	
[65, 65]	1.15E-04		1.09E-05		28	
[129, 129]	5.39E-07	7.74	1.24E-07	6.46	69	
[257, 257]	5.50E-09	6.62	1.38E-09	6.48	293	
[513, 513]	3.09E-10	4.15	1.02E-10	3.76	1351	

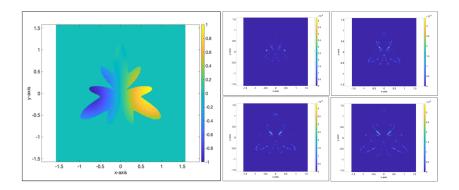
◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�()

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania Benjamin Pentecost Improved AMIB Method 8/13

Table: Temporal convergence tests for solving the ImIBVP with the "butterfly"-shaped interface

N _t	L^{∞}	L^{∞}		L^2	
- · L	error	order	error	order	$\begin{array}{c} BCG\\ time \ (sec) \end{array}$
2	1.67 E-03		9.24E-04		82
4	4.01E-04	2.05	2.23E-04	2.05	160
8	9.99 E- 05	2.01	5.54E-05	2.01	308
16	2.49E-05	2.00	1.38E-05	2.00	568
32	6.23E-06	2.00	3.46E-06	2.00	1104
64	1.56E-06	2.00	8.65 E-07	2.00	2038
128	3.89E-07	2.00	2.16E-07	2.00	3802

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania


< □ > < □ > < □ > < □ > < □ >

Numerical Results

▲御▶ ▲ 副≯

ъ

The "aircraft" Interface (Heat Eqn.)

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania Benjamin Pentecost Improved AMIB Method 10/13

Table: Convergence tests for solving the ImIBVP with the "aircraft"-shaped interface of various scale factors

scale factor	no. of	points	L^{∞}	L^2	BCG
k	IP	\mathbf{FP}			time (sec)
1.0	662	909	5.24E-09	3.78E-10	121
1.3	856	1198	3.41E-09	2.48E-10	122
1.6	1060	1479	4.32E-09	3.16E-10	141
1.9	1266	1765	3.43E-09	2.20E-10	131

ril 17, 2024 Department of Mathematics West Chester University of Pennsylvania

< □ > < □ > < □ > < □ > < □ >

Benjamin Pentecost Improved AMIB Method 11/13

Conclusion

Key characteristics of the developed AMIB method are:

- ▶ capable of solving problems over highly irregular domains
- capable of handling versatile boundary conditions
- unconditionally stable when solving time-dependent problems
- ▶ accelerated by the FFT for high efficiency
- ▶ fourth-order accuracy (in space)

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

▲ 同 ▶ ▲ 国 ▶ ▲ 国

References

- Li, C., Zhao, S., Pentecost, B., Ren, Y., & Guan, Z. (2024). A fourth-order Cartesian grid method with FFT acceleration for elliptic and parabolic problems on irregular domains and arbitrarily curved boundaries. To be submitted.
- Li, C., Ren, Y., Long, G., Boerman, E., & Zhao, S. (2023). A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains. Journal of Scientific Computing, 95(2), 49-. https://doi.org/10.1007/s10915-023-02177-7
- Ren, Y., Feng, H., & Zhao, S. (2022). A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. Journal of Computational Physics, 448, 110762-. https://doi.org/10.1016/j.jcp.2021.110762

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

・ロト ・ 同ト ・ ヨト ・ ヨ