West Chester University [Digital Commons @ West Chester University](https://digitalcommons.wcupa.edu/)

[Mathematics Student Work](https://digitalcommons.wcupa.edu/math_stuwork) [Mathematics](https://digitalcommons.wcupa.edu/math) Student Work Mathematics Mathematics Mathematics

4-17-2024

An Augmented Matched Interface and Boundary (AMIB) Method for Solving Problems on Irregular 2D Domains

Benjamin Pentecost

Follow this and additional works at: [https://digitalcommons.wcupa.edu/math_stuwork](https://digitalcommons.wcupa.edu/math_stuwork?utm_source=digitalcommons.wcupa.edu%2Fmath_stuwork%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Partial Differential Equations Commons](https://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.wcupa.edu%2Fmath_stuwork%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages)

 QQ

Improved Augmented Matched Interface and Boundary (AMIB) Method for Solving Problems on Irregular 2D Domains

Benjamin Pentecost bp957721@wcupa.edu

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ $\langle \langle \rangle \rangle$ $\langle \rangle$

Mathematical Models

▶ Poisson Eqn. (time-indept.):

$$
\Delta u + ku = f(\vec{x}), \qquad (1.1)
$$

▶ Boundary Condition:

 $1₁$ 0.8 0.6

 04

 0.2

 -0.4

 -0.6

 -0.8

 $^{+4.1}_{-4.1}$

 -0.5 $\frac{0}{x}$

 \mathbf{r} $\overline{0}$ -0.2 Numerical Solution

$$
\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \phi(\vec{x}), \qquad (1.2)
$$

 0.5

los

 0.15

 0.1

 0.05

 $\ddot{}$

$$
\frac{\partial u}{\partial t} = \beta \Delta u + g, \quad 0 \le t \le T, \quad (1.3)
$$

▶ Boundary Condition:

$$
\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \psi(t, \vec{x}), \text{ on } \Gamma, \quad (1.4)
$$

$$
\blacktriangleright
$$
 Initial Condition:

$$
u(0, \vec{x}) = u_0(\vec{x}), \tag{1.5}
$$

 \equiv

 299

[§](#page-2-0)[Introduction](#page-2-0) [§](#page-4-0)[AMIB Method](#page-4-0) [§](#page-7-0)[Numerical Results](#page-7-0) [§](#page-12-0)[Conclusion](#page-12-0)

 QQ

Applications

Figure: Poisson–Boltzmann eqn. for electrostatic potential distribution over a protein.

Figure: Pennes Bioheat eqn. for heat dissipation in Magnetic Fluid Hyperthermia (MFH).

K ロト K 御 ト K 君 ト K 君

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania [Benjamin Pentecost Improved AMIB Method 3/13](#page-1-0)

イロト イ押ト イヨト イヨ

 $2Q$

Interface Points, Fictitious Points, and Vertical Points

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania [Benjamin Pentecost Improved AMIB Method 4/13](#page-1-0)

Fictitious Value Representations at Fictitious Points

$$
\tilde{u}_{\text{FP}} = \sum_{(x_I, y_J) \in S_{\text{FP}}} \tilde{w}_{\text{I},J} u_{\text{I},J} + \sum_{\vec{x}_{\text{VP}_1} \in V_{\text{FP}}} \tilde{w}_{\text{VP}_1} \phi(\vec{x}_{\text{VP}_1}), \tag{2.1}
$$

イロト イ押ト イヨト イヨ

 \bar{p} Þ 2990

where S_{FP} is a set of chosen grid points and V_{FP} is a set of vertical points.

[Benjamin Pentecost Improved AMIB Method 5/13](#page-1-0)

The Augmented System

$$
\left(\begin{array}{cc} A & B \\ C & I \end{array}\right) \left(\begin{array}{c} U \\ Q \end{array}\right) = \left(\begin{array}{c} F \\ \Phi \end{array}\right), \tag{2.2}
$$

Let N_1 = number of interior grid points, N_2 = number of interface points, we have:

Figure: Nonzero entries of B and C.

 \Rightarrow

 2990

 \S [Introduction](#page-2-0) \S [AMIB Method](#page-4-0) \S **S**[Numerical Results](#page-7-0) \S [Conclusion](#page-12-0) $\frac{\S}{\S}$

The "starfish" Interface (Poisson Eqn.)

Figure: Numerical solution of the "starfish" interface.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

The "butterfly" Interface (Heat Eqn.)

Figure: Numerical solution of the "butterfly" interface.

メロト メタト メミト メミトル $E = 990$

Table: Temporal convergence tests for solving the ImIBVP with the "butterfly"-shaped interface

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

イロト イ部ト イミト イモト

Þ

 QQ

[Benjamin Pentecost Improved AMIB Method 9/13](#page-1-0)

 \S [Introduction](#page-2-0) \S [AMIB Method](#page-4-0) \S **S**[Numerical Results](#page-7-0) \S [Conclusion](#page-12-0) $\frac{\S}{\S}$

 \leftarrow \Box \rightarrow

Þ

 $\,$

The "aircraft" Interface (Heat Eqn.)

→ 御 → → 君 → → 君 つへへ April 17, 2024 Department of Mathematics West Chester University of Pennsylvania [Benjamin Pentecost Improved AMIB Method 10/13](#page-1-0)

Table: Convergence tests for solving the ImIBVP with the "aircraft"-shaped interface of various scale factors

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

メロメ メタメ メミメ メミメ

 299

Þ

[Benjamin Pentecost Improved AMIB Method 11/13](#page-1-0)

 QQ

Conclusion

Key characteristics of the developed AMIB method are:

- ▶ capable of solving problems over highly irregular domains
- ▶ capable of handling versatile boundary conditions
- ▶ unconditionally stable when solving time-dependent problems
- ▶ accelerated by the FFT for high efficiency
- ▶ fourth-order accuracy (in space)

April 17, 2024 Department of Mathematics West Chester University of Pennsylvania

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

References

- Li, C., Zhao, S., Pentecost, B., Ren, Y., & Guan, Z. (2024). A fourth-order Cartesian grid method with FFT acceleration for elliptic and parabolic problems on irregular domains and arbitrarily curved boundaries. To be submitted.
- Li, C., Ren, Y., Long, G., Boerman, E., & Zhao, S. (2023). A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains. Journal of Scientific Computing, 95(2), 49-. https://doi.org/10.1007/s10915-023-02177-7
- Ren, Y., Feng, H., & Zhao, S. (2022). A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. Journal of Computational Physics, 448, 110762-. https://doi.org/10.1016/j.jcp.2021.110762