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Abstract

In this paper a new result on the existence and uniqueness of the adapted solution
to a backward stochastic evolution equation in Hilbert spaces under non Lipschitz
condition is established. The applicability of this result is then illustrated in a
discussion of some concrete backward stochastic partial differential equation. Fur-
thermore, stochastic maximum principle for optimal control problems of stochastic
systems governed by backward stochastic evolution equations in Hilbert spaces is
obtained.
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1 Introduction

Backward stochastic differential equations (BSDEs for short) have important
applications in stochastic control and financial markets. Since the publication
of the work of Pardoux and Peng ([13]) , many papers have been dedicated
to the study of backward stochastic differential equations. Several of these
papers (see [7], [8], [9], [18], [17]) have been devoted to the case of BSDE in
infinite dimensional spaces. Hu and Peng [7], [8] have considered two cases of
semi-linear backward stochastic evolution equations (BSEEs): in the first case
the existence of a so-called “mild solution” was established, and in the second
case semi-linear backward stochastic partial differential equations (BSPDEs)
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were considered. This kind of equation appears, for example, in the theory
of optimal control and controllability for stochastic partial differential equa-
tions (see [2]). Maximum principles for stochastic control systems in infinite
dimensional spaces were studied by Bensoussan [1], [2], Mahmudov [4], Hu
and Peng [8]. Maximum principles for backward stochastic equations in finite
dimensional space were studied by Dokuchaev and Zhou [5]. In the present
paper, we first establish a result concerning the existence and uniqueness of a
mild solution for a class of BSEEs with non-Lipschitzian coefficients in Hilbert
space that generalizes some of the results in [7], [18], [8]. Secondly, we formu-
late a stochastic maximum principle for optimal control problems of stochas-
tic systems governed by BSEEs in Hilbert spaces and solve a backward linear
quadratic stochastic control.

2 Preliminaries

In this section we introduce notations needed to establish our results.

(Ω, FT ,P) is a probability space together with a normal filtration {Ft, 0 ≤ t ≤ T},
X, U and E are three separable Hilbert spaces. W is a Q-Wiener process on
(Ω, FT ,P) with the linear bounded covariance operator such that trQ < ∞.
We assume that there exists a complete orthonormal system {ek} in E, a
bounded sequence of nonnegative real numbers λk such that Qek = λkek,
k = 1, 2, ... and a sequence {βk} of independent Brownian motions such that

〈w (t) , e〉 =
∞∑

k=1

√
λk 〈ek, e〉βk (t) , e ∈ E, t ∈ [0, T ] ,

where 〈·, ·〉 is the inner product in E. Moreover we assume that Ft is gener-

ated by w (t) . Let L0
2 = L2

(
Q1/2E, X

)
be the space of all Hilbert-Schmidt

operators from Q1/2E to X with the inner product 〈Ψ, Φ〉L0
2

= tr [ΨQΦ∗] .
L2 (Ω, FT , X) is the Hilbert space of all FT -measurable square integrable vari-
ables with values in a Hilbert space X. L2

F([0, T ] , X) is the Hilbert space of all
square integrable and Ft -adapted processes with values in X. We recall that
f is said to be Ft -adapted if f (t, ·) : Ω → X is Ft -measurable, a.e. t ∈ [0, T ] .

For any β ∈ R, define Mβ [t, T ] to be the Banach space

Mβ [t, T ] = L2
F (Ω, C ([t, T ] , X)) × L2

F

(
[t, T ] , L0

2

)
equipped with the norm

‖(y, z)‖2
β,t = E sup

t≤s≤T
e2βs ‖y (s)‖2 + E

∫ T

t
e2βs ‖z (s)‖2 ds.
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Since 0 < T < ∞, all the norms ‖·‖β,t with different β ∈ R are equivalent.
M [0, T ] = M0 [0, T ] is the Banach space endowed with the norm

‖(y, z)‖2 = E sup
0≤s≤T

‖y (s)‖2 + E
∫ T

0
‖z (s)‖2 ds.

3 Backward Stochastic Evolution Equations

In this section we study the existence and uniqueness of solution to the fol-
lowing class of backward stochastic evolution equations in a Hilbert space
X

⎧⎪⎨⎪⎩
dy (t) = − [Ay (t) + F (t, y (t) , z (t))] dt − [G (t, y (t)) + z (t)] dw (t) ,

y (T ) = ξ,
(1)

where A : D (A) ⊂ X → X is a linear operator which generates a C0-
semigroup {S (t) , 0 ≤ t ≤ T} on X, F : [0, T ] × X × L0

2 → X and G :
[0, T ] × X → L0

2 are given measurable mappings, and ξ ∈ L2 (Ω, FT , X).

Definition 1 A pair of adapted processes (y, z) ∈ L2
F (Ω, C ([0, T ] , X)) ×

L2
F (Ω × [0, T ] , L0

2) is a mild solution of (1) if for all t ∈ [0, T ] they satisfy

y (t) = S (T − t) ξ +
∫ T

t
S (s − t) F (s, y (s) , z (s)) ds

+
∫ T

t
S (s − t) [G (s, y (s)) + z (s)] dw (s) , P -a.s.

3.1 Lipschitz case

In this subsection we study existence and uniqueness of mild solution to the
equation

y (t) = S (T − t) ξ +
∫ T

t
S (s − t) F (s, y (s) , z (s)) ds

+
∫ T

t
S (s − t) [g (s) + z (s)] dw (s) , P -a.s. (2)

We make the following assumptions on the function F : [0, T ]×X ×L0
2 → X.

3



(L1) There exists an L > 0 such that

‖F (t, y, z) − F (t, y, z)‖ ≤ L (‖y − y‖ + ‖z − z‖) ,

for all t ∈ [0, T ] , y, y ∈ X, z, z ∈ L0
2.

(L2) F (·, 0, 0) ∈ L2 ([0, T ] , X) .

Lemma 2 For any (f, g) ∈ L2
F ([0, T ] , X) × L2

F ([0, T ] , L0
2) the equation

y (t) = S (T − t) ξ +
∫ T

t
S (s − t) f (s) ds

+
∫ T

t
S (s − t) [g (s) + z (s)] dw (s) , P -a.s. (3)

has a unique solution in Mβ [0, T ], and moreover

E sup
0≤s≤t

e2βs ‖y (s)‖2 + E
∫ T

t
e2βs ‖z (s)‖2 ds

≤ 24M2
S

(
e2βTE ‖ξ‖2 +

1

2β

∫ T

t
e2βrE ‖f (r)‖2 dr

)
(4)

+ 2E
∫ T

t
e2βr ‖g (r)‖2 dr,

where MS = sup
{
‖S (t)‖B(X) , 0 ≤ t ≤ T

}
and B (X) is the space of bounded,

linear operators on X.

Proof. Equation (3) is a linear BSEE. As such, by Lemma 2.1 [7], it admits
a unique mild solution (y, z) ∈ Mβ [0, T ] given by

y (t) = S (T − t) E {ξ | Ft} +
∫ T

t
S (s − t) E {f (s) | Ft} ds, (5)

z̃ (t) = S (T − t) L (t) −
∫ T

t
S (s − t) K (t, s) ds, z (t) = z̃ (t) − g (t) , (6)

where, by the martingale representation theorem (see [7], [4]) the processes L ∈
L2

F ([0, T ] , L0
2) and K ∈ L2

F ([0, T ] × [0, T ] , L0
2) satisfy the following relations

E {ξ | Ft} = Eξ +
∫ t

0
L (θ) dw (θ) ,

E {f (s) | Ft} = Ef (s) +
∫ t

0
K (s, θ) dw (θ) .

Now, we estimate the solution (y, z) given by (5)-(6) in Mβ [t, T ] for β > 0.
From (5) it follows that

E sup
t≤s≤T

e2βs ‖y (s)‖2 ≤ 2M2
SE sup

t≤s≤T
e2βs ‖E {ξ | Fs}‖2

+2M2
SE sup

t≤s≤T
e2βs

(∫ T

s
E {‖f (r)‖ | Fs} dr

)2

= I1 + I2. (7)
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Standard computations yield:

I2 ≤ 2M2
SE sup

t≤s≤T

(
E

{
eβs

∫ T

s
‖f (r)‖ dr | Fs

})2

≤ 2M2
SE sup

t≤s≤T

(
E

{
sup

t≤τ≤T
eβτ

∫ T

τ
‖f (r)‖ dr | Fs

})2

≤ 8M2
SE

(
sup

t≤τ≤T
eβτ

∫ T

τ
‖f (r)‖ dr

)2

≤ 8M2
SE sup

t≤τ≤T
e2βτ

∫ T

τ
e−2βrdr

∫ T

τ
e2βr ‖f (r)‖2 dr

≤ 8M2
SE sup

t≤τ≤T
e2βτ 1

2β

[
e−2βτ − e−2βT

] ∫ T

τ
e2βr ‖f (r)‖2 dr

≤ 8M2
S

1

2β

∫ T

t
e2βrE ‖f (r)‖2 dr.

Consequently, by (7)

E sup
t≤s≤T

e2βs ‖y (s)‖2 ≤ 8M2
Se2βT E ‖ξ‖2 + 8M2

S

1

2β

∫ T

t
e2βrE ‖f (r)‖2 dr. (8)

Next, we estimate z. We have

‖z̃ (s)‖2 ≤ 2M2
S ‖L (s)‖2 + 2M2

S

e−2βs

2β

∫ T

s
e2βθ ‖K (θ, s)‖2 dθ.

From here it follows that

E
∫ T

t
e2βs ‖z̃ (s)‖2 ds ≤ 2M2

SE
∫ T

t
e2βs ‖L (s)‖2 ds

+ 2M2
S

1

2β
E

∫ T

t

∫ T

s
e2βθ ‖K (θ, s)‖2 dθds

≤ 8M2
Se2βT E ‖ξ‖2 + 2M2

S

1

2β
E

∫ T

t

∫ θ

0
e2βθ ‖K (θ, s)‖2 dsdθ

≤ 8M2
Se2βT E ‖ξ‖2 + 4M2

S

1

β

∫ T

t
e2βθE ‖f (θ)‖2 dθ. (9)

The inequalities (8) and (9), together, imply that

E sup
t≤s≤T

e2βs ‖y (s)‖2 + 2E
∫ T

t
e2βs ‖z̃ (s)‖2 ds

≤ 24M2
S

(
e2βTE ‖ξ‖2 +

1

2β

∫ T

t
e2βrE ‖f (r)‖2 dr

)
,

which in turn implies (4).
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Lemma 3 For any (f, g) ∈ L2
F ([0, T ] , X) × L2

F ([0, T ] , L0
2) , the associated

mild solution of (3) satisfies the following estimate

E sup
0≤s≤t

‖y (s)‖2 + E
∫ T

t
‖z (s)‖2 ds

≤ 24M2
S

(
E ‖ξ‖2 + (T − t)

∫ T

t
E ‖f (r)‖2 dr

)
+ 2E

∫ T

t
‖g (r)‖2 dr. (10)

Proof. See [7].

Theorem 4 BSEE (2) admits a unique solution (y, z) ∈ Mβ [0, T ] .

Proof. For any fixed (y, z) ∈ Mβ [0, T ] , it follows from (L2) that

f (·) = F (·, y (·) , z (·)) ∈ L2
F ([0, T ] , X) .

By Lemma 2, the equation

y (t) = S (T − t) ξ +
∫ T

t
S (s − t) F (s, y (s) , z (s)) ds

+
∫ T

t
S (s − t) [g (s) + z (s)] dw (s) , P -a.s. (11)

has a unique solution in Mβ [0, T ].

Thus, the operator Φ : Mβ [0, T ] → Mβ [0, T ] defined by

Φ (y, z) = (y, z) ,

where (y, z) is the solution of (11), is well-defined. Moreover, the inequality
(4) implies that

‖Φ (y, z) − Φ (ỹ, z̃)‖2
0 ≤ 12M2

S

1

β

∫ T

0
e2βsE ‖F (s, y (s) , z (s)) − F (s, ỹ (s) , z̃ (s))‖2 ds

≤ 12M2
SL

1

β

∫ T

0
e2βsE

(
‖y (s) − ỹ (s)‖2 + ‖z (s) − z̃ (s)‖2

)
ds

= 12M2
SL

1

β
T ‖(y, z) − (ỹ, z̃)‖2

0 .

We can choose β > 0 large enough to get the contractivity of the operator
Φ on Mβ [0, T ] , which in turn implies the existence and uniqueness of the
solution to (2).
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3.2 Approximation

We now construct an approximate sequence using a Picard-type iteration. Let
y0 (t) = 0, and let {yn, zn} be a sequence in L2

F ([0, T ] , X) × L2
F ([0, T ] , L0

2)
defined recursively by

yn (t) = S (T − t) ξ +
∫ T

t
S (s − t) F (s, yn−1 (s) , zn (s)) ds

+
∫ T

t
S (s − t) [G (s, yn−1 (s)) + zn (s)] dw (s) , (12)

on 0 ≤ t ≤ T. We remark that by Theorem 4 the equation (12) has a unique
solution (yn, zn) .

To state our main result, we impose the following assumptions on the functions
F and G.

(N1) F (·, 0, 0) ∈ L2 ([0, T ] , X) , G (·, 0) ∈ L2 ([0, T ] , L0
2) .

(N2) There exists an l > 0 such that

‖F (t, y, z) − F (t, y, z)‖2 ≤ ρ
(
‖y − y‖2

)
+ l ‖z − z‖2 ,

‖G (t, y) − G (t, y)‖2 ≤ ρ
(
‖y − y‖2

)
for all t ∈ [0, T ] , y, y ∈ X, z, z ∈ L0

2. Here ρ is a concave increasing function
from [0,∞) to [0,∞) such that ρ (0) = 0, ρ (u) > 0 for u > 0 and∫

0+

du

ρ (u)
= ∞.

Since ρ is concave and ρ (0) = 0, there is a pair of positive numbers a and b
such that

ρ (u) ≤ a + bu (13)

for all u ≥ 0. Therefore, under assumptions (N1) and (N2), F (·, y (·) , z (·)) ∈
L2

F ([0, T ] , X) and G (·, y (·)) ∈ L2
F ([0, T ] , L0

2) , whenever y (·) ∈ L2
F ([0, T ] , X)

and z (·) ∈ L2
F ([0, T ] , L0

2).

Now we introduce some important constants used throughout the paper.

C1 = 24M2
S

(
e2βTE ‖ξ‖2 +

1

2β

∫ T

0
e2βs

(
2 ‖F (s, 0, 0)‖2 + 2a

)
ds

)

+ 2
∫ T

0
e2βs

(
2 ‖G (s, 0)‖2 + 2a

)
ds, C1 ≥ 4aT, (14)

C2 = 24M2
S

1

β
b + 4b,

C3 =

(
12M2

S

1

β
+ 2

)
e2βT , C4 = C3ρ (4C1 exp (C2T )) .

7



Lemma 5 Under hypotheses (N1) and (N2), for all 0 ≤ t ≤ T and n ≥ 1,

E

(
sup

t≤s≤T
e2βs ‖yn (s)‖2

)
≤ C1 exp (C2 (T − t)) , (15)

E
∫ T

t
e2βs ‖zn (s)‖2 ds ≤ 2C1 (1 + C2 (T − t) exp (C2 (T − t))) , (16)

where C1 and C2 are both positive constants defined in (14).

Proof. It follows from Lemma 2 that

E sup
t≤s≤T

e2βs ‖yn (s)‖2 + E
∫ T

t
e2βs ‖zn (s)‖2 ds

≤ 24M2
S

(
e2βTE ‖ξ‖2 +

1

2β

∫ T

t
e2βrE ‖F (r, yn−1 (r) , zn (r))‖2 dr

)

+ 2E
∫ T

t
e2βr ‖G (r, yn−1 (r))‖2 dr. (17)

Using hypotheses (N1) and (N2) with (13) yields

‖F (s, yn−1 (s) , zn (s))‖2 ≤ 2 ‖F (s, 0, 0)‖2 + 2a + 2b ‖yn−1 (s)‖2 + 2l ‖zn (s)‖2 ,

‖G (s, yn−1 (s))‖2 ≤ 2 ‖G (s, 0)‖2 + 2a + 2b ‖yn−1 (s)‖2 .

Substituting these into (17) gives

E sup
t≤s≤T

e2βs ‖yn (s)‖2 + E
∫ T

t
e2βs ‖zn (s)‖2 ds

≤ 24M2
Se2βT E ‖ξ‖2

+ 24M2
S

1

2β
E

∫ T

t
e2βs

(
2 ‖F (s, 0, 0)‖2 + 2a + 2b ‖yn−1 (s)‖2 + 2l ‖zn (s)‖2

)
ds

+ 2E
∫ T

t
e2βs

(
2 ‖G (s, 0)‖2 + 2a + 2b ‖yn−1 (s)‖2

)
ds.

Thus

E sup
t≤s≤T

e2βs ‖yn (s)‖2 +

(
1 − 24M2

S

1

β
l

)
E

∫ T

t
e2βs ‖zn (s)‖2 ds

≤ C1 + C2E
∫ T

t
sup

s≤r≤T

(
e2βr ‖yn−1 (r)‖2

)
ds, (18)

where C1 and C2 are defined in (14). Choosing β > 0 such that 1−24M2
S

1
β
l = 1

2
,

we obtain

sup
1≤n≤m

E

(
sup

t≤s≤T
e2βs ‖yn (s)‖2

)
≤ C1+C2

∫ T

t
sup

1≤n≤m
E sup

s≤r≤T

(
e2βr ‖yn−1 (r)‖2

)
ds.

8



An application of the Gronwall inequality now implies

sup
1≤n≤m

E

(
sup

t≤s≤T
e2βs ‖yn (s)‖2

)
≤ C1 exp (C2 (T − t)) .

Since m was arbitrary, the inequality (15) follows. Finally it follows from (18)
that for β = 48M2

Sl we have

E
∫ T

t
e2βs ‖zn (s)‖2 ds ≤ 2C1 + 2C2

∫ T

t
C1 exp (C2 (T − s)) ds

≤ 2C1 (1 + C2 (T − t) exp (C2 (T − t))) .

Lemma 6 Under hypotheses (N1) and (N2), there exists a constant C3 > 0
defined in (14) such that

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖yn+m−1 (r) − yn−1 (r)‖2

)
ds

for all 0 ≤ t ≤ T and n, m ≥ 1.

Proof. Applying Lemma 2 we have

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 + E
∫ T

t
e2βs ‖zn+m (s) − zn (s)‖2 ds

≤ 12M2
S

1

β
E

∫ T

t
e2βs ‖F (s, yn+m−1 (s) , zn+m (s)) − F (s, yn−1 (s) , zn (s))‖2 ds

+ 2E
∫ T

t
e2βs ‖G (s, yn+m−1 (s)) − G (s, yn−1 (s))‖2 ds

≤
(

12M2
S

1

β
+ 2

)
e2βTE

∫ T

t
ρ

(
e2βs ‖yn+m−1 (s) − yn−1 (s)‖2

)
+ 12M2

S

1

β
E

∫ T

t
e2βs ‖zn+m (s) − zn (s)‖2 ds.

For sufficiently large β > 0 we have

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 +

(
1 − 12M2

S

1

β

)
E

∫ T

t
e2βs ‖zn+m (s) − zn (s)‖2 ds

≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖yn+m−1 (r) − yn−1 (r)‖2

)
ds. (19)

Lemma 7 Under hypotheses (NI) and (N2), there exists a constant C4 > 0

9



defined in (14) such that

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 ≤ C4 (T − t) .

for all 0 ≤ t ≤ T and for all n, m ≥ 1.

Proof. By Lemmas 5 and 6 we have

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖yn+m−1 (r) − yn−1 (r)‖2

)
ds

≤ C3

∫ T

t
ρ (4C1 exp (C2 (T − s))) ds

≤ C3ρ (4C1 exp (C2T )) (T − t) = C4 (T − t) .

The proof is complete.

Define

ϕ1 (t) = C4 (T − t) ,

ϕn+1 (t) = C3

∫ T

t
ρ (ϕn (s)) ds, n ≥ 1,

ϕ̃n,m (t) = E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 , n ≥ 1, m ≥ 1.

Lemma 8 There exists 0 ≤ T1 < T such that for all n, m ≥ 1

0 ≤ ϕ̃n,m (t) ≤ ϕn (t) ≤ ϕn−1 (t) ≤ · · · ≤ ϕ1 (t) for all t ∈ [T1, T ] . (20)

Proof. We prove this lemma by induction in n.

By Lemma 7, we have

ϕ̃1,m (t) = E sup
t≤s≤T

e2βs ‖y1+m (s) − y1 (s)‖2 ≤ C4 (T − t) = ϕ1 (t) .

By Lemma 6

ϕ̃2,m (t) = E sup
t≤s≤T

e2βs ‖y2+m (s) − y2 (s)‖2

≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖y1+m (r) − y1 (r)‖2

)
ds

= C3

∫ T

t
ρ (ϕ̃1,m (s)) ds ≤ C3

∫ T

t
ρ (ϕ1 (s)) ds = ϕ2 (t) .

We must show that there exists T1 > 0 such that for all t ∈ [T1, T ] the
inequality

ϕ2 (t) = C3

∫ T

t
ρ (C4 (T − s)) ds ≤ C4 (T − t) = ϕ1 (t) (21)
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holds.

To this end, note that this inequality holds provided that

C3ρ (C4 (T − t)) ≤ C4 = C3ρ (4C1 exp (C2T ))

or

C3ρ (4C1 exp (C2T )) = C4 (T − t) ≤ 4C1 exp (C2T ) = 4A.

On the other hand, this holds if

C3 {A + 4bA} (T − t) ≤ 4A.

Since A = C1 exp (C2T ) ≥ C1 ≥ 4aT the above inequality holds if

T − t ≤ 4

C3

[
1

4T
+ 4b

] ≤ 4

C3

[
a
A

+ 4b
] .

Thus, (21) holds for any t satisfying

T − t ≤ 4

C3

[
1

4T
+ 4b

] .

Clearly, such t does not depend on the final value ξ. Thus, there exists T1 > 0
such that

ϕ2 (t) ≤ ϕ1 (t)

for all t ∈ [T1, T ]. Now, assume that (20) holds for some n ≥ 2. Then, using
the same inequalities as above yields

ϕ̃n+1,m (t) ≤ C3

∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖yn+m (r) − yn (r)‖2

)
ds

= C3

∫ T

t
ρ (ϕ̃n,m (s)) ds ≤ C3

∫ T

t
ρ (ϕn (s)) ds = ϕn+1 (t)

for all t ∈ [T1, T ]. On the other hand, we have

ϕn+1 (t) = C3

∫ T

t
ρ (ϕn (s)) ds ≤ C3

∫ T

t
ρ (ϕn−1 (s)) ds = ϕn (t)

for all t ∈ [T1, T ]. This completes the proof.

Theorem 9 Assume that (N1) and (N2) hold. Then, there exists a unique
mild solution (y, z) to the equation (1).

Proof. Uniqueness: To show the uniqueness, let both (y, z) and (ỹ, z̃) be

11



solutions of the equation (1). Then, Lemma 2 implies

E sup
t≤s≤T

e2βs ‖y (s) − ỹ (s)‖2 + E
∫ T

t
e2βs ‖z (s) − z̃ (s)‖2 ds

≤ 12M2
S

1

β

∫ T

t
e2βs ‖F (s, y (s) , z (s)) − F (s, ỹ (s) , z̃ (s))‖2 ds

+ 2E
∫ T

t
e2βs ‖G (s, y (s)) − G (s, ỹ (s))‖2 ds

≤ C
∫ T

t
ρ

(
E sup

s≤r≤T
e2βr ‖y (r) − ỹ (r)‖2

)
ds + 12M2

S

1

β
E

∫ T

t
e2βs ‖z (s) − z̃ (s)‖2 ds.

Therefore, one can apply the Bihari inequality to (4) to obtain

E sup
t≤s≤T

e2βs ‖y (s) − ỹ (s)‖2 = 0.

So, y (t) = ỹ (t) for all 0 ≤ t ≤ T almost surely. It then follows from (4)
that z (t) = z̃ (t) for all 0 ≤ t ≤ T almost surely as well. This establishes the
uniqueness.

Existence: We claim that

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 → 0, for allT1 ≤ t ≤ T, (22)

as n, m → ∞. Note that, by definition ϕn is continuous on [T1, T ] . Note also
that for each n ≥ 1, ϕn (·) is decreasing on [T1, T ], and for each t, ϕn (t)
is a nonincreasing sequence. Therefore, we can define the function ϕ (t) by
ϕn (t) ↓ ϕ (t). It is easy to verify that ϕ (t) is continuous and nonincreasing on
[T1, T ]. By the definitions of ϕn (t) and ϕ (t) we get

ϕ (t) = lim
n→∞C3

∫ T

t
ρ (ϕn (s)) ds = C3

∫ T

t
ρ (ϕ (s)) ds

for each t ∈ [T1, T ]. Since ∫
0+

du

ρ (u)
= ∞

the Bihari inequality implies ϕ (t) = 0 for all t ∈ [T1, T ]. Consequently,
limn→∞ ϕn (T1) = 0. By Lemma 8

E sup
t≤s≤T

e2βs ‖yn+m (s) − yn (s)‖2 ≤ sup
T1≤t≤T

ϕ̃n,m (t)

≤ sup
T1≤t≤T

ϕn (t) = ϕn (T1)
n→∞→ 0.

So, (22) must hold. Applying (22) to (19) we see that {yn, zn} is a Cauchy
(hence convergent ) sequence in Mβ [T1, T ]; denote the limit by (y, z). Now

12



letting n → ∞ in (12) we obtain

y (t) = S (T − t) ξ +
∫ T

t
S (s − t) F (s, y (s) , z (s)) ds

+
∫ T

t
S (s − t) [G (s, y (s)) + z (s)] dw (s) ,

on [T1, T ]. Since the value of T1 depends only on the function ρ, one can deduce
by iteration the existence on [T − k (T − T1) , T ] for each k, and therefore the
existence on the entire interval [0, T ].

The theorem has been proved.

As an illustration of the applicability of this general existence and uniqueness
result, we consider examples of concrete backward stochastic partial differen-
tial equations.

Example A Let D be a bounded domain in R
N with smooth boundary ∂D.

Consider the following initial boundary value problem.

∂y(t, z) = (Δzz(t, x) + F (t, x, y(t, x), z(t, x))) ∂t

+ [G(t, x, y(t, x)) + z(t, x)] dβ(t), a.e. on (0, T ) ×D
y(t, x) = 0, a.e. on (0, T ) × ∂D, (23)

y(T, x) = ξ(T, x), a.e. on D,

where y : [0, T ]×D → R, z : [0, T ]×D → L0
2(R

N ; L2(D)) F : [0, T ]×D×R×
L0

2(R
N ; L2(D)) → R, G : [0, T ] × D × R → L0

2(R
N , L2(D)), β is a standard

N−dimensional Brownian motion (equipped with a normal filtration {Ft},
and ξ : [0, T ] ×D → R is an FT−measurable random variable.

We impose the following conditions:

(E1) F satisfies the Caratheodory conditions (i.e., measurable in (t, x, y) and
continuous in the fourth variable) and there exists MF > 0 such that

|F (t, x, w1, y1) − F1(t, x, w2, y2)| ≤ MF [|w1 − w2|+ ‖y1 − y2‖L0
2(RN ,L2(D))

]
,

for all 0 ≤ t ≤ T, x ∈ D, w1, w2 ∈ R, y1, y2 ∈ L0
2(R

N , L2(D)).
(E2) G satisfies the Caratheodory conditions and there exists MG > 0 such
that

‖G(t, x, w1) − G(t, x, w2)‖L0
2(R

N ,L2(D)) ≤ MG |w1 − w2| ,
for all 0 ≤ t ≤ T, z ∈ D, w1, w2 ∈ R.

We have the following theorem:

13



Theorem 10 If (E1) and (E2)) are satisfied, then (23) has a unique mild

solution (y, z) ∈ L2 (0, T ; L2(Ω, L2(D))) × L2
F

(
0, T ; L2(RN , L2(Ω, L2(D)))

)
.

Proof. Let X = L2(D) and K = R
N . Also, denote

∂y

∂t
by y′(t), and define

the operator A by

Ay(t, ·) = Δxy(t, ·), y ∈ H2(D) ∩ H1
0 (D). (24)

It is known that A generates a strongly continuous semigroup {S(t)}on L2(D)
(see [15]). Define the maps f : [0, T ]×X×L0

2(K; X) → X and g : [0, T ]×X →
L0

2(K, X) by
f(t, y(t), z(t))(x) = F (t, x, y(t, x), z(t, x)) (25)

g(t, y(t))(x) = G(t, x, y(t, x)), (26)

for all 0 ≤ t ≤ T, x ∈ D. With these identifications, we observe that (23) can
be written in the abstract form (1). Clearly, f and g as defined in (25) and
(26) satisfy (N1) and (N2), respectively. Hence, we can invoke Theorem 9 to
conclude that (23) has a unique mild solution (y, z) ∈ L2 (0, T ; L2(Ω, L2(D)))×
L2

F

(
0, T ; L2(RN , L2(Ω, L2(D)))

)
.

4 Stochastic Maximum Principle

In this section we consider the following stochastic controlled system

y (t) +
∫ T

t
S (s − t) f (s, y (s) , z (s) , u (s)) ds

+
∫ T

t
S (s − t) z (s) dw (s) = S (T − t) ξ. (27)

with the cost functional

J (u) = Eh (y (0)) + E
∫ T

0
l (t, y (t) , z (t) , u (t)) dt. (28)

Here, f : [0, T ] × X × L0
2 × U → X, h : X → X, l : [0, T ] × X × L0

2 × U → R

are measurable functions, ξ ∈ L2 (Ω, FT , X) and u : [0, T ] × Ω → U .

We impose the following assumptions.

(A1) f, l, h are continuously differentiable with respect to (y, z) .
(A2) The derivatives of f with respect to y, z are uniformly bounded

‖fy‖ + ‖fz‖ ≤ C

and
‖hy‖ + ‖ly‖ ≤ C (1 + ‖y‖) , ‖lz‖ ≤ C (1 + ‖z‖) ,
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where C is a positive constant.

Now we define

Uad =
{
u ∈ L2

F ([0, T ] , U) : u (t, ω) ∈ U
}

.

It is clear that under (A1)-(A2) for any u ∈ Uad the state equation (27) admits
a unique solution (y, z) = (y (·, u (·)) , z (·, u (·))) and the cost functional (28) is
well-defined. We call (y, z, u) an admissible triple, and (y, z) and an admissible
state process. An optimal control problem can be stated as follows.

Problem A. Find a control u0 (·) ∈ Uad such that

J
(
u0

)
= inf

u∈Uad

J (u) . (29)

Any control u0 satisfying the equality (29) is called an optimal control. The
corresponding (y0, z0) = (y (·, u0 (·)) , z (·, u0 (·))) and (y0, z0, u0) are called an
optimal state process and optimal triple, respectively.

Assume that

(
y0 (·) , z0 (·) , u0 (·)

)
is an optimal solution of the control problem (28) and (27). Consider the
following forward stochastic equation

ψ (t) = S (t) hy

(
y0 (0)

)
+

∫ t

0
S (s − t)

{
f ∗

y [s] ψ (s) + ly [s]
}

ds

+
∫ t

0
S (s − t) {f ∗

z [s] ψ (s) + lz [s]} dw (s) . (30)

In what follows we shall use the following notations.

F [t] = F
(
t, y0 (t) , z0 (t) , u0 (t)

)
,

ΔuF (t) = F
(
t, y0 (t) , z0 (t) , u (t)

)
− F [t] ,

ΔyF (t) = F
(
t, y (t) , z0 (t) , u0 (t)

)
− F [t] ,

ΔzF (t) = F
(
t, y0 (t) , z (t) , u0 (t)

)
− F [t] .

Let H be a Hamiltonian function given by
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H (t, v) =
〈
f

(
t, y0 (t) , z0 (t) , v

)
, ψ (t)

〉
− l

(
t, y0 (t) , z0 (t) , v

)
.

For any given

v ∈ Uad, t0 ∈ [0, T ), 0 < ε ≤ T − t0,

define a spike variational control by

uε (t) =

⎧⎪⎨⎪⎩
v, t ∈ [t0, t0 + ε] ,

u0 (t) , otherwise.

Let (yε (·) , zε (·)) be the solution of (27) corresponding to the admissible con-
trol uε (·), and let (pε (·) , qε (·)) be the solution of the following linear BSDE

pε (t) +
∫ T

t
S (s − t) fy [s] pε (s) ds +

∫ T

t
S (s − t) fz [s] qε (s) ds

+
∫ T

t
S (s − t) qε (s) dw (s) +

∫ T

t
S (s − t) Δuεf [s] ds = 0. (31)

We have the following theorem.

Theorem 11 Let (A1) and (A2) hold. Then

sup
0≤t≤T

E ‖pε (t)‖2 + E
∫ T

0
‖qε (t)‖2 dt = O

(
ε2

)
, (32)

sup
0≤t≤T

E ‖pε (t)‖4 + E
∫ T

0
‖qε (t)‖4 dt = O

(
ε4

)
, (33)

sup
0≤t≤T

E
∥∥∥yε (t) − y0 (t) − pε (t)

∥∥∥2
+ E

∫ T

0

∥∥∥zε (t) − z0 (t) − qε (t)
∥∥∥2

dt = o
(
ε2

)
.

(34)

Moreover, the following formula holds

J (uε) − J
(
u0

)
= E

〈
hy

(
y0 (0)

)
, pε (0)

〉
+ E

∫ T

0
〈ly [s] , pε (s)〉 ds (35)

+ E
∫ T

0
〈lz [s] , qε (s)〉 ds + E

∫ T

0
Δlu [s] ds + o (ε) .
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Proof. By the Taylor formula we have

J (uε) − J
(
u0

)
= E

[
h (yε (0)) − h

(
y0 (0)

)]
+ E

∫ T

0

[
l (s, yε (s) , zε (s) , uε (s)) − l

(
s, y0 (s) , z0 (s) , u0 (s)

)]
ds

= E
∫ 1

0

〈
hy

(
y0 (0) + θ

(
yε (0) − y0 (0)

))
, Δy0 (0)

〉
dθ

+ E
∫ T

0

〈
ly

(
s, y0 (s) + θ

(
yε (s) − y0 (s)

)
, zε (s) , uε (s)

)
, Δy0 (s)

〉
ds

+ E
∫ T

0

〈
lz

(
s, y0 (s) , z0 (s) + θ

(
zε (s) − z0 (s)

)
, uε (s)

)
, Δz0 (s)

〉
ds,

where Δy0 (s) = yε (s) − y0 (s) and Δz0 (s) = zε (s) − z0 (s) . Let Y ε (t) =
yε (t) − y0 (t) − pε (t) and Zε (t) = zε (t) − z0 (t) − qε (t) . Then

J (uε) − J
(
u0

)
= E

〈
hy

(
y0 (0)

)
, pε (0)

〉
+ E

〈
hy

(
y0 (0)

)
, Y ε (0)

〉
+ E

∫ 1

0

〈
hy

(
y0 (0) + θ

(
yε (0) − y0 (0)

))
− hy

(
y0 (0)

)
, pε (0) + Y ε (0)

〉
dθ

+ E
∫ T

0
〈ly [s] , pε (s) + Y ε (s)〉 ds

+ E
∫ T

0
〈lz [s] , qε (s) + Zε (s)〉 ds + E

∫ T

0
Δlu [s] ds

+ E
∫ T

0

〈
ly

(
s, y0 (s) + θ

(
yε (s) − y0 (s)

)
, zε (s) , uε (s)

)
− ly [s] , pε (s) + Y ε (s)

〉
ds

+ E
∫ T

0

〈
lz

(
s, y0 (s) , z0 (s) + θ

(
zε (s) − z0 (s)

)
, uε (s)

)
− lz [s] , qε (s) + Zε (s)

〉
ds.

Then by Theorem 11, we can obtain (35).

Theorem 12 (Stochastic Maximum Principle) Assume that (A1) and (A2)
hold, and let (y0, z0, u0) be an optimal triple of Problem A. Then, there is a
process ψ satisfying (30) such that

H (t, v) ≤ H
(
t, u0 (t)

)
, (36)

for all v ∈ U, a.e. t ∈ [0, T ] , P -a.s.

Proof. By the formula (35) we have

J (uε) − J
(
u0

)
= E

〈
hy

(
y0 (0)

)
, pε (0)

〉
+ E

∫ T

0
〈ly [s] , pε (s)〉 ds

+ E
∫ T

0
〈lz [s] , qε (s)〉 ds + E

∫ T

0
Δlu [s] ds + o (ε) .
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On the other hand

E
〈
hy

(
y0 (0)

)
, pε (0)

〉
+ E

∫ T

0
〈ly [s] , pε (s)〉 ds + E

∫ T

0
〈lz [s] , qε (s)〉 ds

= E
∫ T

0
〈Δuεf [s] , pε (s)〉 ds.

Thus

0 ≤ J (uε) − J
(
u0

)
= E

∫ T

0
〈Δuεf [s] , pε (s)〉 ds + E

∫ T

0
Δlu [s] ds + o (ε)

and from here we can easily obtain the variational inequality (36).

5 A backward linear quadratic problem

In this section we apply Theorem 12 to a linear quadratic problem as a par-
ticular case of the Problem A.

Consider the following problem

J (u) = E 〈Gy (0) , y (0)〉 + E
∫ T

0
〈Γ (t) u (t) , u (t)〉 dt → min (37)

subject to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dy (t) = [Ay (t) + Bu (t) + Cz (t)] dt

+z (t) dw (t) ,

y (T ) = ξ.

(38)

Here B : U → X, C : L0
2 → X, Γ : [0, T ] → L (U). We assume that G = G∗,

Γ (t) = Γ∗ (t) ≥ γI.

Let u0 be an optimal control, and (y0, z0) be the corresponding state process.
The adjoint process ψ is the solution of

−dψ (t) = A∗ψ (t) dt + C∗ψ (t) dw (t) ,

ψ (0) = Gz0 (0) . (39)

Theorem 13 There exists a unique optimal control u0 for the problem (37)-
(38) in the class Uad. Moreover, u0 has the following representation

u0 (t) = Γ−1 (t) B∗ψ (t) . (40)

Proof. It is clear that (37) is a positive quadratic functional of control be-
cause of the assumptions on G and Γ (t) . Hence an optimal control exists.
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Furthermore, the BSDE has the form (39). By Theorem 12〈
Bu0 (t) , ψ (t)

〉
−

〈
Γ (t) u0 (t) , u0 (t)

〉
≥ 〈Bv, ψ (t)〉 − 〈Γ (t) v, v〉

for all v ∈ U.This in turn implies (40). Hence the control (40) is the only
control which satisfies the stochastic maximum principle. It then must be the
optimal control. This completes the proof.

Theorem 14 The optimal control u0 for the problem (37)-(38) can be repre-
sented as

u0 (t) = Γ−1 (t) B∗P (t) y (t) , (41)

where y (t) is the solution of

y′ (t) =
[
A + BΓ−1 (t) B∗P (t)

]
y (t) ,

y (0) = y0 (0) , (42)

and P (t) is the mild solution of

dP (t) = −
(
P (t) A + A∗P (t) + P (t) BΓ−1B∗P (t)

)
dt

+ C∗P (t) dw (t) .

Proof. Let ψ̃ (t) = P (t) y (t) . We have

dψ̃ (t) = dP (t) y (t) + P (t) dy (t)

= −
(
P (t) A + A∗P (t) + P (t) BΓ−1 (t) B∗P (t)

)
y (t) dt

− C∗P (t) dw (t) y (t)

+ P (t)
(
A + BΓ−1 (t) B∗) y (t) dt

= − (A∗P (t) − C∗P (t) dw (t)) y (t)

= −A∗ψ̃ (t) dt − C∗ψ̃ (t) dw (t)

So ψ̃ (t) satisfies the same equation as ψ (t) . Hence ψ̃ (t) = ψ (t) by the unique-
ness. The theorem is proved.
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Response to the reviewer’s comments on
NA-D-05-00322

First, we would like to sincerely thank the reviewer for carefully reading
the manuscript and providing valuable comments that have led to improved
results. In addition, we would like to address each of the reviewer’s comments
individually to explain how we modified the paper accordingly.

Comment 1. In view of the interdisciplinary nature of the journal NA
TMA, it would be better if the authors would explain with some details the role
of the generator A in Eq(1) and its connection with semigroup S(t).

Role of the generater in Eq(1) is explained in the example A of the section
3.

Comment 2. Before the definition 1 it would be better to describe clearly
the domain and the range of functions F and G.

The following sentence is inserted before definition 1: ” where A : D (A) ⊂
X → X is a linear operator which generates a C0-semigroup {S (t) , 0 ≤ t ≤ T }
on X, F : [0, T ]×X×L0

2 → X and G : [0, T ]×X → L0
2 are given mappings,

and ξ ∈ L2 (Ω, FT , X).”
Comment 3. The constant Ms in inequality (7) (p. 4) should be described

precisely.
In order to describe MS the following sentence is inserted to Lemma 2:

”where MS = sup
{
‖S (t)‖B(X) , 0 ≤ t ≤ T

}
and B (X) is the space of

bounded, linear operators on X.”
Comment 4. In connection with remark ”...by Theorem 4...” about re-

currsive equation (12) (p.7), I think that it woud be better to consider Theorem
4 with equation:

y(t) = S(T−t)ξ > +
∫ T

t

S(s−t)F (s, y(s), z(s))ds++
∫ T

t

S(s−t)(g(s)+z(s))dw(s)

instead of BSEE (2). The proof seems to remain the same.
We have changed Equations (2) and (12) by the equation suggested by re-

viewer. The reviewer is right the proof remains same.
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