West Chester University

Digital Commons @ West Chester University

Mathematics Student Work

Mathematics

4-17-2024

Bioheat Equation Analysis

Johnathan Makar West Chester University of Pennsylvania

Follow this and additional works at: https://digitalcommons.wcupa.edu/math_stuwork

Part of the Partial Differential Equations Commons

Recommended Citation

Makar, J. (2024). Bioheat Equation Analysis. Retrieved from https://digitalcommons.wcupa.edu/ math_stuwork/7

This Conference Proceeding is brought to you for free and open access by the Mathematics at Digital Commons @ West Chester University. It has been accepted for inclusion in Mathematics Student Work by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact wcressler@wcupa.edu.

MAT 555 Industrial Mathematics: Continuous Models Practicum

Pennes Bioheat Equation

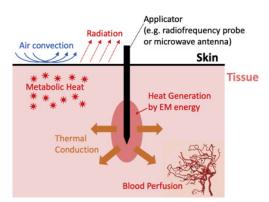
Johnathan Makar

Department of Mathematics West Chester University of Pennsylvania

4/17/2024

Pennes Experiment

Pennes goal was to evaluate the applicability of heat flow theory to the forearm in basic terms of local rate of tissue heat production and volume flow of blood



Physiological Derivation

Fick's principle:

$$h_b = V \cdot s(\theta_a - \theta_v) \tag{1.1}$$

Newtons Law of Cooling applied to the forearm:

$$\theta = \left[\theta_a - \frac{(h_m + h_b)}{4K}R^2\right] - \frac{(h_m + h_b)}{4K}r^2$$
 (1.2)

V	Volume flow of blood	s	Specific heat of blood
h_b	Rate of heat transfer,	θ_v	Venous blood temperature
	blood to tissue		
θ_a	Arterial blood tempera-	K	Specific thermal conduc-
	ture		tivity of tissue
h_m	rate of tissue heat produc-	r	Radial distance from the
	tion		axis
R	Radius of the cylinder		

Pennes' Assumptions

- The cross-section of a forearm is cylindrical
- The rate of heat production by tissue will be considered uniform throughout the forearm
- The volume flow of blood is constant
- The specific thermal conductivity K will be uniform

Using his assumptions and prior equations, Pennes established the general heat equation in cylindrical coordinates:

$$cp\frac{\partial\theta}{\partial t} = -K\left[\frac{\partial^2\theta}{\partial r^2} + \frac{1}{r}\frac{\partial\theta}{\partial r} + \frac{1}{r^2}\frac{\partial\theta}{\partial\phi} + \frac{\partial^2\theta}{\partial Z^2}\right] + h_m + h_b \quad (1.3)$$

c	Coefficient of heat for	p	Density of tissue
	tissue		
K	Specific thermal con-	r	Radial distance from
	ductivity of tissue		the axis
ϕ	Angular gradient	Z	Long axis gradient
θ	Tissue temperature	h_m	Rate of tissue heat
			production
h_b	Rate of heat transfer,		
	blood to tissue		

Pennes' Phenomenon

- Pennes paper received criticism due to his experimental data and his modeled data not matching up
- Wissler found that Pennes had been using certain parameters that were available at the time, but not accurate for the human body
- Wissler found that more standardized parameters could be applied to get the model output closer to experimental data
- The result is that temperature profiles computed by using the Pennes model agree with the measured profiles as well as can be expected

Pennes Bioheat Equation

Pennes did not have the computer power back in 1948 to deal with cartesian coordinates, so we converted the cylindrical into cartesian:

$$cp\frac{\partial\theta}{\partial t} = -K\left[\frac{\partial^2\theta}{\partial x^2} + \frac{1}{r}\frac{\partial^2\theta}{\partial y^2} + \frac{\partial^2\theta}{\partial z^2}\right] + h_m + h_b \tag{1.4}$$

c	Coefficient of heat for	p	Density of tissue
	tissue		
K	Specific thermal con-	θ	Tissue temperature
	ductivity of tissue		
h_m	Rate of tissue heat	h_b	Rate of heat transfer,
	production		blood to tissue

1D Pennes Bioheat Equation

From Pennes assumptions of equilibrium, we can derive the 1-D equation to be:

$$cp\frac{\partial\theta}{\partial t} = K\frac{\partial^2\theta}{\partial x^2} + V \cdot s(K-1)(\theta - \theta_v) + h_m$$
 (1.5)

subject to

Initial condition: $\theta(x,0) = \theta_0(x)$ Boundary condition: $\theta(0,t) = \theta(L,t)$

Analytical Result

$$\theta(r^*) = \theta_{\inf} + (\theta_a - \theta_{\inf}) \left(1 + \frac{q_m^*}{w_b^*} \right) \left(\frac{I_0(\sqrt{w_b^*} r^*)}{1 - I_0(\sqrt{w_b^*}) + \frac{\sqrt{w_b^*}}{h_A^*} I_1(\sqrt{w_b^*})} \right)$$

Where I_0 and I_1 are special functions called Bessel Functions.

q_m	Metabolic heat generation per unit volume
w_b	Blood perfusion rate
h_A	Coefficient of convection and radiation

Numerical Solution

- Since we were able to get an analytical solution in the 1-D case, we worked on getting a numerical solution in the same case
- We used the Forward Difference Method in the time direction and the Central Difference Method in the x-direction. This allows us to get the updating equation below:

$$\theta_i^{n+1} = \left(1 - \frac{2\alpha\Delta t}{\Delta x^2}\right)\theta_i^n + \alpha\frac{\Delta t}{\Delta x^2}\left(\theta_{i+1}^n + \theta_{i-1}^n\right) + g_i^n\Delta t$$
where $g_i^n = \frac{V \cdot s(K-1)(\theta_i^n - \theta_a + h_m)}{cp}$ and $\alpha = \frac{K}{cp}$
for $n = 0, 1, 2, ..., n_t$ and $i = 1, 2, ..., n_x$

Experimental Results

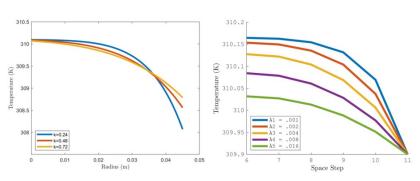


Figure: K Parameter Testing

Figure: λ Parameter Testing

where
$$\lambda = \frac{K}{cp} \frac{\Delta t}{\Delta x^2}$$

Experimental Results

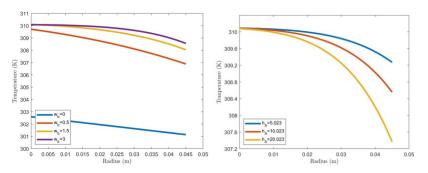


Figure: Blood Perfusion Rate Testing

Figure: Coefficient of Heat Transfer

w_b	Blood perfusion rate	
h_A	Coefficient of convection and radiation	

Conclusion

- The 1-D Bioheat Equation and its many parameters can be tested to see which parameter most significantly changes the result
- This research is a stepping stone for a new cancer treatment method called Magnetic Fluid Hyperthermia
- Human bodies are unique and each treatment would be case-by-case. Studying how the parameters affect the heat propagation will help doctors create the best treatment method

Further Research

- Work towards solving the 2-D and 3-D Bioheat Equation
- Continue parameter testing in different locations inside the body
- Apply the Bioheat Equation to irregular domains

References

- Pennes, Harry H. "Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm." Journal of Applied Physiology, vol. 1, no. 2, Aug. 1948, pp. 93–122
- Wissler, Eugene H. "Pennes' 1948 paper revisited." Journal of Applied Physiology, vol. 85, no. 1, 1 July 1998, pp. 35–41.
- 3 Yue, Kai, et al. "An Analytic Solution of One-dimensional Steady-state Pennes' Bioheat Transfer Equation in Cylindrical Coordinates." Journal of Thermal Science, vol. 13, no. 3, Aug. 2004, pp. 255–258.