
West Chester University
Digital Commons @ West Chester University

Computer Science College of Arts & Sciences

2011

P2N: A Pedagogical Pattern for Teaching
Computer Programming to Non-CS Majors
Zhen Jiang
West Chester University of Pennsylvania, zjiang@wcupa.edu

Eduardo B. Fernandez
Florida Atlantic University

Liang Cheng
Lehigh University

Follow this and additional works at: http://digitalcommons.wcupa.edu/compsci_facpub

Part of the Computer Sciences Commons, and the Educational Methods Commons

This Conference Proceeding is brought to you for free and open access by the College of Arts & Sciences at Digital Commons @ West Chester
University. It has been accepted for inclusion in Computer Science by an authorized administrator of Digital Commons @ West Chester University. For
more information, please contact wcressler@wcupa.edu.

Recommended Citation
Jiang, Z., Fernandez, E. B., & Cheng, L. (2011). P2N: A Pedagogical Pattern for Teaching Computer Programming to Non-CS Majors.
PLoP '11 Proceedings of the 18th Conference on Pattern Languages of Programs Retrieved from http://digitalcommons.wcupa.edu/
compsci_facpub/17

http://digitalcommons.wcupa.edu?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/cas?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub/17?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wcupa.edu/compsci_facpub/17?utm_source=digitalcommons.wcupa.edu%2Fcompsci_facpub%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wcressler@wcupa.edu

P2N: A Pedagogical Pattern for Teaching Computer
Programming to Non-CS Majors

Zhen Jiang
Computer Science

Department
West Chester University
West Chester, PA 19383
zjiang@wcupa.edu

Eduardo B. Fernandez
Department of Computer
Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431
ed@cse.fau.edu

Liang Cheng
Department of Computer
Science and Engineering

Lehigh University
ethlehem, PA 18015

cheng@cse.lehigh.edu

ABSTRACT

We introduce a new method for non-computer-science ma-
jors to learn computer programming, in order to quickly
prepare them for their own major study or research work.
Traditional computer science programs ignore the need for
such quick training, forcing them to take several semesters
and many foundation courses with computer-science (CS)
majors. Because those students lack sufficient background
knowledge, they cannot achieve the education goal as a CS
graduate may have in those courses. On the other hand,
the existing entry-level training focuses on the systematic
study of fundamental materials for the long-term CS career.
It lacks attraction to students who are pursuing immedi-
ate support for their specified applications. An effective ap-
proach is needed to attract non-CS majors and to keep them
working hard on those materials with a significant technical
depth. Loops are one of the basic programming structures
but we often overlook the challenge in its learning process.
By using our practice at West Chester University as an ex-
ample, we demonstrate the challenges as well as our success
for our non-CS majors to quickly learn to develop loops cor-
rectly. On one hand, we adopt the disciplined training model
with many subtasks that is commonly used in China in order
to cover all the required materials. On the other hand, we
adopt the model that is commonly used in American classes
and use commercial-off-the-shelf products, games, work tem-
plates, etc. in order to help students form the abstractions,
understand the corresponding materials, gain the appropri-
ate skills, and achieve each intermediate task goal. This
pattern provides a solution for a complex education prob-
lem in a short time scale.

Categories and Subject Descriptors: L.3.6 [Science and
Technology of Learning]: Technology Enhanced Learning.

General Terms: Pattern Learning, STEM Education.

Keywords: Course Curriculum, Pedagogical Pattern, Pro-
gramming Teaching.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A prelimnary version of this paper was presented in a writ-
ers’ workshop at the 18th Conference on Pattern Languages of Programs
(PLoP). PLoP’11, October 21-23, Portland, Oregon, USA.
Copyright 2012 is held by the author(s). ACM 987-1-4503-1283-7.

1. INTRODUCTION
Computers have changed our world in many significant

ways. Students, especially senior students, from other sci-
ence majors with various backgrounds require computer skills
for their own major study or research work. This creates a
demand for a quick training that can prepare them in one
or two semesters. Existing entry-level courses in CS0, CS1,
or minor programs (e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13]) that
are available for those inexperienced non-CS majors usually
aim to a long-term, systematic, and broad study for the CS
major/career. The need for quick training is ignored. On
the other hand, most of the computer applications on which
they are working are commercial-off-the-shelf (COTS) and
use many advanced techniques in industry that are beyond
what we currently teach in the entry-level courses. A new
effective learning process is needed to quickly prepare stu-
dents with widely divergent background to be able to have
the programming abilities of a CS graduate.

Loops [15] are one of the basic program structures. How-
ever, as indicated by Elliot Solloway, even experienced pro-
grammers have but a 50% chance of developing the correct
loop when confronted with a do-while (or do-until) choice.
To ensure correctness, the programmers must learn many
theoretical aspects such as axiomatic semantics [22]. This is
the main obstacle (or challenge) for non-CS majors in our
training especially when the time of learning and practice is
limited.

To our knowledge, there is no existing method to com-
pletely solve the above training problem. With the peda-
gogical pattern P

2
N proposed in this paper, we illustrate

our approach and share its success. Inspired by the Chinese
training model for amateurs to quickly obtain a high level
of proficiency in iPhone application development, we adopt
a disciplined learning process in which the educational out-
comes can be assessed easily in different steps. For instance,
we teach two types of loops in class (e.g., [21]). The students
will learn the development of the counter-control loop in a
6-step procedure and that of the event-control loop in a 10-
step procedure respectively. To solve the common problem
of the fragmented and superficial learning in the disciplined
training, we provide a 3-phase solution to guarantee the ac-
cumulation of achievements in each step in an efficient way,
saving the time to reach an ambitious education goal. Our
approach and its contributions are summarized as follows:

1. We adoptCOTS computer equipment, with research
activities relevant to the topics discussed in class to
give students a vivid picture of the use of the entire

training process, motivating their study from the be-
ginning and verifying their ultimate learning outcomes
at the end.

2. We interpret the programming experience into tem-

plates. The advanced materials can be transparent,
making the programming easy to learn and to prac-
tice. Reaping the general benefits of repeating their
uses, i.e., reusability and concept abstraction [19], stu-
dents easily form abstraction, understand materials,
and gain skills. In this way, the obstacles of each
step can be conquered with limited time and the corre-
sponding achievement can be accumulated successfully
and quickly.

3. We develop a software tool to encourage students to
have sufficient programming practice. Organized un-
der our training model, each step has its own learning
outcomes verified by practicing this customized soft-
ware tool in different levels. This helps to assess the
achievement in each step (or subtask).

The remainder is organized as follows: Section 2 describes
the pattern P

2
N , while Section 3 presents some conclusions.

2. PEDAGOGICALPATTERN FORTEACH-

ING PROGRAMMING TO NON-CS MA-

JORS (P2N)
This pattern describes a method to attract a broad range

of students (e.g., non-CS majors) to a condensed computer
training that teaches structural programming, such as loop
development. It keeps them working hard on materials with
a significant technical depth. The students do not have much
background in programming, so we need to introduce con-
cepts without requiring much previous knowledge. Our ap-
proach helps taming the complex teaching tasks in a very
short time frame and guarantees their quality.

2.1 Context
This pattern is applicable to a course or program with

complex tasks and ambitious goal, for instance, industry
training in centers that needs to prepare programmers in a
short time; or computer training in universities that teaches
structural programming to non-CS majors. For example, we
taught loop development to junior students of the Physics
department (and other 11 departments such as the Account-
ing department) at West Chester University (WCU) who
had little or limited computer experience but required com-
puter techniques to process the experimental data for their
senior research projects.

2.2 Problem
When we teach the entry-level programming course with

materials more advanced than the standard ones (e.g., [1]),
such as the concept of correct program with axiomatic se-
mantics, the time of learning and for practice becomes rel-
atively short. Students may not have enough time to finish
the practice as we usually expect for CS majors in a much
longer training. The learning is fragmented and superficial.
Therefore, our proposed education goal looks like too am-
bitious and our training tasks are complex especially when
our students are non-CS majors and they lack the sufficient
programming experience (or background) as prerequisites.

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

disciplined learning model traditional learning model proposed learning model

Part 1

Part 2

Part 3

overlap of
materials

shorter time needed for the
same material coverage

condensed training
well organized with
less overlap, saving
the training time

longest training timeshortest time needed,
needed many details ignored

progress
learning

Technique depth

co
m

p
lete co

v
erag

e req
u
ired

intermediate goal

coverage
fragmented &
superficial

unsecured

(flexible to
self−study

each
individual)

Figure 1: Comparison of different teaching styles.

The students in our class come from up to 11 different de-
partments. Their background and motivation for taking our
class are widely divergent. Thus, the synchronization of stu-
dent learning progress in our class is also difficult, which in-
creases the complexity and difficulty of our training. The
above challenges in our programming training are summa-
rized as the following constraints:

1) the difficulty of learning with critical time constraints

2) the asynchronous learning progress of students with
widely divergent backgrounds, and

3) the lack of sufficient programming background as pre-
requisites.

To achieve the ultimate education goal in our condensed
and accelerated training, we need a pedagogical method that
is not only able to draw students’ interest but also to keep
this interest during the entire training procedure.

2.3 Forces
Traditional class training

• Pros: uses many examples to help students form the
concept abstraction and gain programming skills;

• Cons: is not feasible in a course with critical time
constraints.

The training is not only limited to the class time but also
extended to project practice in the succeeding courses. Such
training in existing bachelor’s study takes several semesters
and requires many core courses before any advanced topic
course can be taken (i.e., the traditional teaching style shown
in Figure 1 in magenta).

Many educators have noticed the advantages of teaching
in different cultures (e.g., [18]). In the Chinese teaching
style,

• Pros: the trainees are disciplined so that they can be
guided to finish the work quickly;

• Cons: the learning is fragmented and superficial and
faces a high failure ratio.

The success of iPhone application development in China
proves that it is possible for amateurs to quickly obtain a
high level of proficiency. In such a model (i.e. the disciplined
teaching style shown in Figure 1 in blue), the trainees ac-
complish the study by achieving many intermediate goals.
However, each sub-task does not have sufficient help to guide
the trainee’s analysis and thought. It is difficult for the
trainee to extend his/her knowledge due to the lack of a
complete background on the subject (i.e., fragmented and
superficial). Moreover, the ultimate training goal cannot be
reached whenever any sub-task becomes an obstacle for the
trainee and this person cannot have the required thinking
and analysis by him- or herself.

2.4 Solution
To schedule the learning progresses of students within

a very limited time frame, we adopt the Chinese discipline
model and design the learning process via multiple steps.
Each step has its own intermediate goals that are relatively
easy to achieve and has its outcomes quickly verified. The
overlap among different steps can be reduced to the min-
imum, in order to avoid wasting time on any unnecessary
replication. By accumulating all intermediate achievements,
the ultimate learning goal can be achieved quickly with this
method. In our sample training which will be discussed
next, the learning of the counter-control loop and the event-
control loop is divided into 6 steps and 10 steps respectively,
according to their roles in the execution in the time sequence
(i.e., operational semantics).

Our solution focuses on realizing the above steps that are
disciplined by the Chinese training model with the American
style. We find a balance of the forces of different teaching
styles, taking advantages of both of them. It is implemented
in 3 phases as illustrated in Figure 2 (a) for the sample loop
training.

1. In phase one, in order to handle the class diversity,
we adopt COTS computer equipment with research
activities relevant to the training to motivate student
study at the beginning. Such equipment and its sample
work are also used at the end of training to verify the
ultimate outcomes and the success of our synchronization
of student learning progresses.

2. In phase two, in order to help students successfully
conquer the obstacles in each step (or subtask), we
adopt a template for the program development. In
this way, the advanced materials can be transparent,
making them easy to learn and to practice even when
the students lack the required background (or experi-
ence) as the prerequisites.

3. In phase three, we develop a software tool to encour-
age students to obtain sufficient programming prac-
tice when the class time is limited. With the sam-
ple cases testing the learning progress at each step
and at each level, the student achievement can be
verified and synchronized. Those achievements will en-
courage students to continue the learning.

We make the training at each step fit the disciplines under
the Chinese training style by the follows:

• The computer grading in the test on each step will
force students to accomplish a good quality work, help-

Guided loop development procedure,
proven correct but transparent
to those theoretical materials

e.g., Wii game−like sensor equip.
and its real projects (the need
for a constant detection) explain
the use of repetition strucutre:
Loop!

applications interesting

supports

helps

Loop training for

(a) Pattern design

non−CS majors

Customized software tools,

helps to understand
the materials

interesting and challenging to
play, attractive to spend more
time of self−learning after class

motivates the
learning

(b) Pattern application in loop study

Phase 1: real projects,
well−known computer

easy, extensible,
disciplined, direct

Phase 2: Template
learning

Phase 3: Game−like
software tool

attractive
challenging,

Education Activities

Figure 2: The proposed pedagogical pattern (P 2
N).

ing instructor(s) to assure the students’ progress in a
very limited time frame.

• The tool for the student work after class saves time in
class, making the condensed training feasible.

To guarantee the education quality at each step for in-
experienced trainees to obtain the expected outcomes, we
integrate the necessary processes of analyzing and thinking
into learning tasks under the traditional American train-
ing mode. The student learning is organized under a pre-set
template. The advanced materials can be transparent in the
description of the success experience with this template. The
concept abstraction provides the disciplines that we need to
guide the student study. Its extensibility provides room for
students to have a process of analyzing and thinking.

To guarantee the success of each step in learning, we de-
veloped a game-like tool. It balances the superficial educa-
tion and its high failure rate under the Chinese style in the
following aspects:

• The human-computer interaction attracts the students
to spend more time after class in a self-learning pro-
cess, guaranteeing the required practice.

• The computer tool will test the students’ learning prog-
ress with different difficulty stages, encouraging stu-
dents to learn the materials gradually and continu-
ously.

• The computer tool uses a comprehensive set of testing
cases, which helps instructor(s) to verify the complete-
ness and quality of the training and to synchronize the
students’ progress.

In order to handle the background diversity in training,
we use COTS products and relevant research projects that
can be recognized by most students. This will motivate the
students by giving a big picture of what they can do. The
software tool adopted in our learning provides the flexibility
for students to schedule their learning after class by them-
selves according to different background and level of each in-
dividual person. This also helps to synchronize the student
learning progress and to assess the result of each intermedi-
ate step.

2.5 Example for pattern implementation
We use the loop training at WCU to demonstrate the

proposed approach. In the following, we first list our ulti-
mate education goals as the training requirements. Then, we
show the challenges in the proposed training. The learning
of loop development is organized in 3 phases, for both the 6-
step procedure of the counter-control loop development and
the 10-step procedure of the event-control loop development,
following the criteria of national training standard for infor-
mation systems security professionals [17]. Each step has
its own education goal according to its different role in the
execution of loop in the time sequence (i.e., the operational
semantics). Phase 1 is applied when the syntax of loops and
the need for the development are discussed in class. Phase
2 is applied to introduce the correct development process in
class. Phase 3 is applied for students to practice in and after
class in order to enhance the understanding of class mate-
rials and to obtain the required knowledge and skills. The
rest of the discussion in this part focuses on how practical
and effective the above 3-phase solution under the Ameri-
can training model helps the learning of loop development
that is disciplined by the Chinese training model. Such a
method will guarantee the students’ necessary analyzing and
thinking, while meeting all challenges. We will discuss our
implementation of that 3-phase solution.

2.5.1 Requirements of a loop program training for
non-Computer-Science majors

The loop is an essential program structure. Our practice
is not only limited to the learning of its syntax, but also has
the following highly expected outcomes in order to prepare
students for the programming of the research projects in
their own major:

• to know when and where a loop is needed,

• to be able to interpret a sequence of events/activities
of program execution into a loop program,

• to have knowledge of the correctness of a loop program,

• to be able to verify a loop program and to correct any
possible error,

• to know how to maintain the program when the situ-
ation or requirements change.

2.5.2 Constraints

The challenge is to achieve the above education goals as
fast as in 3 classes (75 minutes each) or equivalently 10
days. Note that many students in such a class are from
other departments such as the Performance & Arts Depart-
ment. Those students are from 11 different departments
and may not have sufficient background knowledge. Imag-
ine that those inexperienced students will be asked to ensure
that all code lines are correct since their very first program.
An effective education model is needed.

2.5.3 3-phase solution

In phase 1, we use work on real research projects to mo-
tivate students. Without the appropriate motivation, the
non-CS majors will work for credits only to meet the general
education requirement for their graduation. They can easily
be distracted from the required learning material according
to our classroom experience and the planned education will

(b) (a)

Figure 3: (a) Research work in biology laboratory
at WCU with the iMote2 sensing platform. (b) Ex-
perimental results that are analyzed and processed
by a loop program demands for an easy and quick
development.

become very difficult. Due to the variety of backgrounds
of those students, such a research result should also have a
broad impact that can be recognized by most students.

For the loop study, we introduce our research [3] with the
Wii [16] game-like equipment iMote2 [14] (see Figure 3). It
is used to detect the change of environment in terms of the
temperature and the light, continuously for every second in
a 7/24 schedule. To analyze the data collected, even simply
to obtain the average, a loop is needed. This introduction
of our iMote2 work can bridge the student development in
class with their daily life and even the jobs in industry. Un-
like existing activity-driven teaching that adopts laboratory
materials of wireless sensing for senior project development
(e.g. [25]), our use of wireless sensing equipment focuses on
the enhancement of students’ interest. Once the students
finish the loop training, they will have a chance later to ap-
ply the programming knowledge to change the control of
sensor equipment in the sample code. This will be tested
in our customized software (discussed later) and its success
ratio will help to verify the ultimate learning outcomes that
a CS graduate may have.

In phase 2, we adopts a template for students to easily
learn the loops and their development in class. First, the
trainees will follow a disciplined procedure to practice the
correct loop program development. The development fol-
lows a standard, to avoid awkward codes that cause a po-
tential hard work in the maintenance of the code. Advanced
concepts and advanced techniques such as program correct-
ness are transparent, but effectively guaranteeing the quality
of programming. Then, when the trainees practice such a
procedure of programming, they repeat the development of
correct programs under the proposed template, accumulat-
ing the experience to gain the required skills and knowledge.
As an abstract module, this procedure can satisfy different
purposes for the use of loop statements, meeting the goal
of our training. Note that the correctness proof for such a
procedure is out of the scope of this paper and is omitted.

Figure 4 shows the statement syntax and the operational
semantics of loop development. This is the template for us
to explain the loop development in class. The repetition body
consists of the code lines that are repeated many times in a
sequence. The condition is used to stop the repetition when
it becomes false. The initialization consists of all assign-
ments changing the value of variables that are used in the

1

3

2
true false

1

2

3

condition event change

1

3

2
true false

(a) (b) (c)

do

}

{

initialization

repetition body

{

}

initialization

repetition body

conditionwhile()

condition

(d)

while() false
true

(e)

initialization

for(initialization ;

repetition body

;)

(f)

Figure 4: Statement syntax and operational semantics (i.e., the loop template for learning). (a)-(b) While
loop, (c)-(d) do-while loop, and (e)-(f) for loop.

Step 1: Can you find
something that is
repeated many times?

Step 2: What do you
expect the computer to
do in the 1st, 2nd, 3rd
iteration?

Step 3: What does the
jth iteration do? (What
is the general format
of the iteration?

Step 4: Do we (obviously)
know how many iterations
needed in this execution?

Step 5a: What is the
condition (in the code)?

Step 6b: What is the
condition (in the code)?

Step 7b: What is the
range of the values
to keep the condition
true (keep repeating)?

Step 8b: What is the
initialization for the
values in Step 7b?

Step 9b: How to change
the values in Step 7b
in each different
iteration?

Step 10b: What is the
rest of the initialization?

Yes, couter−
control loop

Step 5b: What is the
situation to terminate
the repetition?

No, event−
control loop

(the corresponding

Step 6a: What is
the initialization?

change on rep. body)

Figure 5: Disciplined steps to develop loop programs
(with the development template).

repetition body before the loop starts its 1st iteration.
Figure 5 shows the details of those disciplined steps with

our template in the loop development. The development
starts from the determination of the repetition body. Then,
the termination condition is decided. At the end, the ini-
tialization is finished to assure that the right code can be
applied to the right pre-condition. This process is based
on the operational semantics of the loop and it is easy to
follow. When the number of loop iterations can be known
easily, this loop is called counter-control loop; otherwise, it
is called event-control loop. To simplify the development,
we strongly suggest the use of the counter-control loop be-
cause it has a simple, structural regularity (see the template
in Figure 6) and require fewer steps of development (i.e., less
work and fewer mistakes). Note that the correctness of the
loop now is easy to verify for inexperienced programmers by
re-applying the same development procedure for a consis-
tency check. Algorithm 1 summarizes the function of each
step. Figures 7 and 8 show the development of a sample loop
program in different ways: the counter-control loop and the
event-control loop respectively. The development progress
at each step is highlighted in red. The event-control loop
requires more steps (i.e., steps 7−9) to determine the event
descriptor and its value changes.

Our program development approach introduces the anal-
ysis and thinking to the life cycle as a) requirement analysis,
b) design & coding, c) verification, and d) maintenance:

• Analysis: When is a loop needed?

Answer: Whenever we find that something is repeated
many times in a sequence (also called the repetition
body).

• Design & Coding: How is a loop developed?

Answer: First, we obtain the description of the repe-
tition body. This forms the abstraction from all itera-
tions, i.e., an “everyone” model that can represent all
iterations. The process is similar to the development of
the general process for each element in an array, but it
focuses on the common part of iterations in the time
sequence. This procedure also supports nested-loop
development by recursively applying the same develop-
ment process on the internal repetition body. Next, we
complete the code (i.e., the terminating condition and
the initialization part) in counter-control loop mode or
event-control loop mode respectively.

• Verification: How do I know I am doing this cor-
rectly?

Answer: To avoid any careless mistake, we need to
verify each step with the results obtained in all previ-
ous steps. For instance, the initialization development
in Step 6a must be consistent with the 1st iteration
described in Step 2. This verification also identifies
those identical programs, in order to avoid unneces-
sary change.

• Maintenance: What about a change of code?

Answer: Simply repeat the above processes until ev-
erything is consistent after the check of the verification
phase.

In phase 3, our approach adopts a customized software
tool to help students complete this learning process by prac-
tice. Even though many advanced matters are clear in class,
the students may still feel that the development procedure
is too complex to follow because they are not convinced by
the necessity of each part/step. Due to the limited prac-
tice time allowed in class, students need help to learn each
programming step throughly by themselves after class. Our
game-like software tool is attractive for students to practice
the loop development with the proposed template. It will
use one of 10 loop programs according to the difficulty level
the student selects. For each selected loop, the computer

{

repetition body

counter = counter + 1;

}

counter = 0;

other initialization

while (counter < NUM)

(a) (b) (c)

{

repetition body

counter = counter + 1;

}

counter = 0;

do

other initialization

while (counter < NUM)

for(counter = 0;

other initialization

counter < NUM ; counter++)

{

repetition body

}

Figure 6: Extensive template for Counter-control loop development (Dashed line encloses the part to be
decided).

while (counter <)

Question: Calculate the result 1+3+5+7+ ... + 99

{

counter = counter + 1;

}

counter = 0;

do

total = 1;

total += 2*counter+3;

while (counter <)49

Yes, couter−
control loop

Step 1: Addition Step 2: 1+3

+5

+7

=

=

Step 3: = + 2*j + 1
(total = total +)

(a)

{

counter = counter + 1;

}

counter = 0;

total = 1;

total += 2*counter+3;

Step 5a:
(counter < 49)

49

Step 6a:
total = 1;

2*counter+3)
(total=total+

counter = 0;

total = 1;

total += 2*counter+3;

for(

counter< ;counter++)49

Step 4: NUM=49!

(d)(b) (c)

Figure 7: (a) Development of a counter-control loop,
highlighted in red, following the disciplined steps in
Figure 5. (b), (c), and (d) The resulting program in
different formats.

while ()

while ()

e = 3;
total = 1;

 total = total + e;
e = e + 2;

e = 3;
total = 1;

 total = total + e;
e = e + 2;

 total = total + e;

Step 6b:
(<= 99)

Step 9b:
 = + 2;

Step 2: 1+3

+5

+7

=

=

No, event−
control loop

Step 10b:
total = 1;

 > 99
Step 5b:

Step 4: Not obvious

Step 3: = + 2*j + 1
(total = total +)

Step 8b:
= 3;

Step 7b:
3, 5, 7, ...,
97, 99.

{

}

do
{

}

(a)

total = 1;

for(e=3; e<=99; e+=2)

(c)(b) (d)

Step 1:

Questoin: Calculate the result 1+3+5+7+ ... + 99

e <= 99

e <= 99

Figure 8: Development (a) and resultant programs
(b), (c), and (d) of an event-control loop following
the disciplined steps in Figure 5.

Algorithm 1: Loop development in a disciplined procedure
with the template.

1. Determine the repetition body and check the necessity
of using a loop statement (Step 1 in Figure 5).

2. Find the general format of the repetition body that is
derived from each iteration in the sequence of execu-
tion (Steps 2 and 3 in Figure 5).

3. If the number of iterations can be known, the program
can be developed in a counter-control loop mode. Oth-
erwise, an event-control loop is needed .

4. For a counter-control loop, provide the condition and
initialization (Steps 5a and 6a in Figure 5) for the re-
quired work that has been shown in Figure 6.

5. For an event-control loop, decide the condition to ter-
minate the repetition process (Step 5b in Figure 5).
Then, determine the event description and its change
in the repetition (Steps 6b − 9b in Figure 5). At last,
provide the initialization (Step 10b in Figure 5) to fin-
ish the work.

will randomly create an implementation which has one and
only one error among all 12 different steps (in the template
as well). The student will be asked to correct this and only
this error, in 5 minutes. This hand-on exercise with up to
67 different cases for each selected loop will force this stu-
dent to have a deep understanding of the entire development
procedure and the corresponding template. It also provides
certain flexibility for students to control the amount of ex-
ercise needed after class (e.g., hours spent on and times of
trials) until they are confident with what they have learnt.

This kind of “one error to correct” game helps students
to go through the development process of Algorithm 1 and
to understand all the relevant details. Figure 9 illustrates
the use of such a tool for assessing any step in the develop-
ment procedure of the counter-control loop. For instance,
in Figure 9 (a), an inconsistency is found when the 3rd iter-
ation has the result of “+3” which is different from the ex-
pected “+5”, by following the development procedure. Since
there is no other error, the body needs a new code to ensure
all the iterations have the right addition operation. The
required change “total=total+2*i+1” is obvious. In Fig-
ure 9 (b), the loop stops one iteration short (i.e., number
of iterations NUM = 49), which demands for a change of
condition (“i<50” or “i<=49”). In the case in Figure 9 (c),
we can find two inconsistent places: one is in the execution
of the 1st iteration and the other is in the initialization. Con-
sidering that only one error produces both inconsistencies,
the initialization must be changed (“total=0”).

Figure 10 demonstrates a similar process for the event-
control loop. We have 4 inconsistent places: two are in the
iterations, one is in the value changes of the event descriptor,
and one is in the initialization part. After the event initial-
ization is changed (“i=3”), the code passes the verification
and becomes 100% correct.

2.5.4 Consequences

Figure 11 summarizes our 9-year experience in teaching

Steps 2 and 3:
total = 0 + 1
total = total + 3
total = total + 3

Step 6a:
total = 0;

Match the template
Steps 4 and 5:

of counter−control
loop, NUM = 50

Match the template
Steps 4 and 5:

of counter−control
loop, NUM = 50

Step 6a:
total = 0;

(b)

(a)

(i < 50)

Step 1: Steps 2 and 3:
total = 0 + 1
total = total + 3
total = total + 5

total = 0;

Step 1: Steps 2 and 3:
total = 3 + 1
total = total + 3
total = total + 5

Step 6a:
total = 3;

(c)

total = total + 2*i + 1;

Step 1:

Steps 4 and 5:
Match the template
of counter−control
loop,
NUM = 49

Figure 9: Test of the counter-control loop devel-
opment with the computer tool (“one error to cor-
rect”). The red arrow indicates the thinking process.

Step 10b:
total = 1;

Step 8b:
i = 0;

Step 9b:
i=i+2;

Step 7b:
0, 2, 4, ...,
96, 98.

Step 4: Not
counter−control loop

Steps 2 and 3:

total = total + 2
1+0

total = total + 4

Step 1:

control loop
No, event−

i = 3;

Step 5:

i>=100
(Step 6 is omitted)

Figure 10: Test of the event-control loop develop-
ment with the computer tool.

Figure 11: Outcome assessment.

loop development in a general education course for non-CS
majors. After the introduction to loop syntax, the students
are asked to do a self-evaluation. Most of them are confident
with what they have learned and estimate that they can
finish 70% of loop development work in this class. However,
when we test with the software tool whether they can think
about the subject matter as a CS graduate can (e.g., the
analysis and thinking process in Figures 9 and 10), only 4%
of the students can really finish the job.

After the introduction to our disciplined steps (in Fig-
ure 5) for the program development in our iMote2 research
project, students are willing to use our proposed template
and the corresponding development procedure in their ex-
ercises. After that, up to 40% of the students get the idea
and pass the test. However, because the training is limited
to one week only, up to 60% of the students still have a dif-
ficult time and cannot fully understand the materials. In
the past 3 years, we introduced the tool in class and used
it in student projects. The improvement is substantial and
significant. After the discussion of such a tool in class, stu-
dents learned how to develop program correctly. 50% of the
students can successfully finish the required work in a quiz.
Then, after their project practice with that tool, up to 90%
of the students can pass the computer test, achieving our
education goal (as a CS graduate can think in Figures 9 and
10) for such a condensed training.

2.6 Known uses
While many computer scientists focus on the quality of

programming in large-scale and complex systems, the in-
dustry requires a more general education of computer pro-
gramming for inexperienced people, in order for them to
fulfill certain programming jobs. Recently, more and more
universities have resorted to new training programs (e.g.,
various minor or certificate programs) to meet such a mar-
ket demand. One of the NSA certified programs [17] at West
Chester University offers undergraduate students a quick in-
formation technology (IT) training by taking only 6 courses.
“CSC115 - Introduction to Computer Programming” is an
entry-level programming course and is the only prerequisite
course for non-computer-science majors to take our NSA-
certified topic courses [12]. This course aims to structure
a programming basis for the development of complex com-
puter application in the succeeding topic courses.

Our CSC115 at WCU is a general education course for all

non-Computer-Science majors, with up to 8 sessions each
semester, four times the number of sessions of the entry-level
programming course that we make available to Computer
Science majors. Recently, its curriculum upgrade with our
proposed pattern [23] has gained the attention from other
departments at WCU and their students. For instance, a
joint research has been initiated with the Biology depart-
ment and the Physics department, in order to have more
suitable projects for their students’ computer training.

The corresponding education practice has also attracted
the interdisciplinary collaboration from other schools. For
instance, our training pattern has been adopted in a newly
created summer programming training for CS majors in
Shanghai Jiaotong University to enhance their programming
ability, which has won the ACM International Collegiate
Programming Contest 3 times in the past 8 years [2].

2.7 Related patterns
Pedagogical patterns [4, 20, 24, 26] are high-level patterns

in documenting good education and training practices and
experiences through design patterns. They have been recog-
nized in many areas of training such as group work, software
design, human computer interaction, education, and others.

Although many pedagogical patterns such as “Spiral” use
steps (or fragments) in the learning process, they focus on
the repetition or additional use to enforce learning. This
requires extra time and delays our learning with critical time
constraints.

The lack of sufficient background knowledge brings a new
insight to our loop development. Our practice for non-CS
majors who haven’t obtained systematic training of com-
puter programming provides a pedagogical solution for this
complex programming education problem in a short time
scale. Patterns such as “Consistent Metaphor”, “Lay of the
Land”, and “Larger than Life” help us to determine the use
of real research projects in the introduction to loop program
in class. “Tool Box” helps us to decide the use of the Wii-
game like wireless equipment, which motivates the students
at the beginning and verifies the outcomes at the end. “Toy
Box” and “Fixer Upper” motivate us to create the “one er-
ror to correct” software tool, in order to help students learn
the proposed development template and the corresponding
disciplined steps (educational sub-tasks).

3. CONCLUSION
Our goal is to make a condensed training practical for

inexperienced trainees. As a result, our computer training
such as the one for loop development has achieved a good
success. In this paper, we have shown the efficiency and ef-
fectiveness of our education model to organize the learning
in and after class through its three phases. The students
are motivated to follow a disciplined procedure and learn
to handle the complex aspects of a routine. As an abstract
module, our approach can satisfy a variety of educational
purposes. The Computer Science Department of WCU has
adopted our approach to attract more non-CS majors to en-
roll in the CSC115 course and to develop their computer
skills. Similar training has been planned at the the inter-
departmental and interdisciplinary level, in order to repeat
the success of our CSC115 education approach.

The specific problem in teaching trainees who have lit-
tle experience is of intrinsic interest because of its economic
importance and potential market value. It is clear that gen-

eral education, certificate programs, and minor programs
are used in many places. These programs vary in language,
application and teaching method. However, our search did
not yield any complete comparison. Based on the discus-
sion above, it is clear that learning programming with our
proposed education model works better with practice. More
importantly, by reaping the benefits of using patterns, our
approach can evolve to a better teaching model for computer
education.

Acknowledgments

This work was supported in part by NSF REU grant CCF
0936942. We would like to thank Dr. James Fabrey and Dr.
Anthony Nicastro for supporting the proposed training at
WCU and Ms. Ayesha Begum for her assistance in the soft-
ware development. We especially thank our shepherd, David
West, who provided valuable comments which considerably
improved this paper. Last but not least, we would like to
thank the writers’ workshop at PLoP’11 and the attendees
for providing insightful suggestions.

4. REFERENCES

[1] ACM/IEEE-CS Computer Science Curricula 2013.
Information is available at
http://ai.stanford.edu/users/sahami/CS2013/strawman-
draft/cs2013-strawman.pdf

[2] ACM International Collegiate Programming Contest.
Information is available at http://en.wikipedia.org/wiki
/ACM International Collegiate Programming Contest.

[3] An accurate measurement of infection on mice with
wireless Imote2 sensor equipment, supported by the
CAS dean’s office at WCU. Information is available at
http://www.cs.wcupa.edu/∼zjiang/RA Spring11.htm.

[4] J. Bergin. Pedagogical Pattern. Information is available
at http://csis.pace.edu/∼bergin/#pedpat.

[5] CS121−204, undergradate programming courses,
Comptuer Science Department, Drexel University.
Information is available at
http://www.drexel.edu/catalog/ug/coe/cs-index.htm#.

[6] CIS101-Introduction to Computer Science: Principles
of Information and Computation, Department of
Computer and Information Science, University of
Pennsylvania. Information is available at
http://www.cis.upenn.edu/ugrad/all-courses.shtml.

[7] CIS1001−68, programming courses for all science
majors, College of Science and Technology, Temple
University. Information is available at
http://www.temple.edu/bulletin/ugradbulletin/
ucd/ucd cis.html.

[8] CISC101-Computers and Information Systems,
University of Delaware. Information is available at
http://primus.nss.udel.edu/CourseDesc/
info.action?searchKey=2011%7CCISC101.

[9] CISC103-Introduction to Computer Science with Web
Applications, University of Delaware. Information is
available at http://primus.nss.udel.edu/CourseDesc/
info.action?searchKey=2011%7CCISC103.

[10] CISC106-General Computer Science for Engineers,
University of Delaware. Information is available at
http://primus.nss.udel.edu/CourseDesc/
info.action?searchKey=2011%7CCISC106.

[11] CMPSC097−397, undergradate programming courses,
Penn State University. Information is available at
http://bulletins.psu.edu/bulletins/bluebook/university
course descriptions.cfm?letter=C&dept=CMPSC

[12] CSC110 & CSC115, general education courses for
non-CS majors, Computer Science Department, West
Chester University. Information is available at
http://www.wcupa.edu/ INFORMATION/OFFICIAL.
DOCUMENTS/Undergrad.Catalog/compsci.htm.

[13] CSE15−17, programming courses for CS major and
minor, Computer Science and Engineering Department,
Lehigh University. Information is available at
http://www3.lehigh.edu/academics/catalog/html/
index.html.

[14] iMote2. Information is available at
https://docs.tinyos.net/index.php/Imote2.

[15] Loop. Information is available at
https://en.wikipedia.org/wiki/Control flow.

[16] Wii. Information is available at https://us.wii.com/.

[17] National security telecommunications and
informationa system security (NSTISS). National
Training Standard for Information Systems Security,
June 1994. Document is also available at
http://www.cnss.gov/Assets/pdf/nstissi 4011.pdf.

[18] A. Chua. Battle Hymn of the Tiger Mother, 2011.
Penguin Press HC.

[19] F. Buschmann. Pattern-Oriented Software
Architecture, 1996. Wiley.

[20] S. Frizell and R. Hubscher. Aligning Theory and
Web-based Instructional Design Practice with Design
Patterns. Proceedings of E-Learning 2002: World
Conference on E-Learning in Corporate, Government,
HealthCare, & Higher Education. pp. 298-304, 2002.

[21] T. Gaddis. Starting out with Java: From control
Structures through Objects, 2008. Pearson.

[22] W. Groesbeck and S. Delaney. Program correctness.
Document is available at
http://www.cse.unr.edu/∼bebis/CS365/
StudentPresentations/ProgramCorrectness.ppt.

[23] Z. Jiang. CSC115-Introducation to Computer
Programming, special session of Matlab for non-CS
majors, Computer Science Department, West Chester
University. Information is available at
http://www.cs.wcupa.edu/zjiang/matlabindex.htm.

[24] D. Jones and S. Sharonn and L. Power. Patterns:
using proven experience to develop online learning.
Proceedings of ASCILITE’99. pp. 155-162, 1999.

[25] J. Mache and N. Bulusu and D. Tyman. Making
sensor networks accessible to undergraduates through
activity-based laboratory materials. Proc. of the 5th
Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and
Networks (SECON’08). pp. 606-608, San Francisco, CA,
June 16- 20, 2008.

[26] Y. Mor. Design for learning: a pattern approach.
presented in the Workshop of the Chairs Conference on
Instructional Technolgies Research: “Learning in the
Technolgical Era”. 2007. Document is also available at
http://lp.noe-kaleidoscope.org/outcomes/chairs.

	West Chester University
	Digital Commons @ West Chester University
	2011

	P2N: A Pedagogical Pattern for Teaching Computer Programming to Non-CS Majors
	Zhen Jiang
	Eduardo B. Fernandez
	Liang Cheng
	Recommended Citation

	education.dvi

