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ABSTRACT

The number of surface observations from nonstandardized networks across the United States has appre-

ciably increased the last several years. Automated Weather Services, Inc. (AWS), maintains one example of

this type of network offering nonstandardized observations for ;8000 sites. The present study assesses the

utility of such a network to improve short-term (i.e., lead times ,12 h) National Digital Forecast Database

(NDFD) forecasts for three parameters most relevant to the energy industry—temperature, dewpoint, and

wind speed. A 1-yr sample of 13 AWS sites is chosen to evaluate the magnitude of forecast improvement

(skill) and influence of physical location (siting) on such improvements. Hourly predictions are generated

using generalized additive modeling (GAM)—a nonlinear statistical equation incorporating a predetermined

set of the most significant AWS and NDFD predictors. Two references are used for comparison: (i) persis-

tence climatology (PC) forecasts and (ii) NDFD forecasts calibrated to the AWS sites (CNDFD). The skill,

measured via the percent improvement (reduction) in the mean absolute error (MAE), of forecasts generated

by the study’s technique (CNDFD1) is comparable (,5%) to PC for lead times of 1–3 h for dewpoint and

wind speed. Skill relative to PC slowly increases with lead time, with temperature exhibiting the greatest

relative-to-PC skill (;30% at 12 h). When compared to baseline CNDFD forecasts, the MAE of the gen-

erated CNDFD1 forecasts is reduced 65% for temperature and dewpoint at the 1-h lead time. An expo-

nential drop in improvement occurs for longer lead times. Wind speed improvements are notably less, with

little skill (,5%) demonstrated for forecasts beyond 4 h. Overall, CNDFD1 forecasts have the greatest

accuracy relative to CNDFD and PC for the middle (3–7 h) lead times tested in the study. Variations in

CNDFD1 skill exist with respect to AWS location. Tested stations located in complex terrain generally

exhibit greater skill relative to CNDFD than the 13-station average for temperature (and, to a lesser degree,

dewpoint). Relative to PC, however, the same subset of stations exhibits skill below the 13-station average. No

conclusive relationship can be made between CNDFD1 skill and the sample stations located near water.

1. Introduction

Improved short-term weather forecasting has been an

increased focus in meteorology, in part because of the

myriad of applications for accurate short-term (1–12 h, as

defined here) forecasts at the economic level. As examples

from the transportation industry, short-term forecasts of

thunderstorms and low ceiling are beneficial to aviation

(Fabbian et al. 2007; Hilliker et al. 2007; Ghirardelli and

Glahn 2010), while developed forecasting techniques of

other weather parameters [e.g., blowing snow, as demon-

strated in Baggaley and Hanesiak (2005)] can be applied

to the short term to assist users in the trucking sector.

It is well established that improved short-term pre-

dictions can be generated by statistical analyses of ob-

servations (e.g., Vislocky and Fritsch 1997; Leyton and

Fritsch 2003), or observations optimally combined with
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model output, as in the model output statistics (MOS)

approach (Glahn and Lowry 1972). This approach has

been more recently expanded to the gridded MOS

(Dallavalle and Glahn 2005; Glahn et al. 2008, 2009) and

Localized Aviation MOS Program (LAMP; Ghirardelli

2005) products. To this end, these studies have shown

the importance and robustness of the National Weather

Service’s (NWS) Automated Surface Observing System

(ASOS) network (Nadolski 1998). As the network of

gray dots in Fig. 1 shows, observing stations are located at

airports, with observations more sparse in areas of com-

plex terrain and/or outside of metropolitan areas. More-

over, the ;50-km average spacing between ASOS stations

is too coarse for use in detecting subgrid model errors and

making precise corrections for timing errors.

To address these and other data density issues with the

nation’s observational surface network, comparable net-

works and mesonetworks to ASOS with similar capabil-

ities have been installed. The (NRC) National Research

Council (NRC; 2008, their appendix B) provides a detailed

list of these individual networks, which include the Road

Weather Information System (RWIS; Quixote Transpor-

tation Technologies 2010), Remote Automated Weather

Stations (RAWS; Zachariassen et al. 2003), and the Na-

tional Resource Conservation Service’s Snowpack Tel-

emtry (SNOTEL) network (Serreze et al. 1999). One of

the more prolific and publicly accessible data providers

is the Citizen Weather Observer Program (CWOP;

Helms 2005), which includes observations often taken

from less expensive, nonstandardized weather stations

owned by private citizens. The success of the plethora

of these individual networks has fostered umbrella data

providers, such as the Meteorological Assimilation and

Data Ingest System (MADIS; Miller et al. 2005) and

MesoWest (Horel et al. 2002), which aggregate obser-

vations from individual mesonetworks.

AWS Convergence Technologies, Inc., has recently

installed an additional network of automated, non-

standardized instruments (AWS; AWS 2010). The black

dots in Fig. 1 indicate the locations of ;8000 AWS (more

commonly referred to by its trade name, ‘‘WeatherBug’’)

sites across the United States, many outside of metro-

politan areas. Most AWS stations are located atop schools

and other public buildings. The AWS instrument package

provides measurements of atmospheric variables includ-

ing temperature, dewpoint, precipitation, and a 2-min

wind average (AWS 2007).

There are, however, disadvantages of this network.

Unlike the unrestricted access to many of the networks

listed in NRC (2008), AWS data are propriety. Second,

supplemental weather parameters such as cloud cover,

visibility, and precipitation type cannot be observed by

the AWS stations. Another consideration is local siting

observational error. Most AWS stations are installed

atop buildings and thus there is no standardized height

at which weather parameters are measured. Moreover,

some variables can be biased (e.g., wind speed) accord-

ing to the number and locations of surrounding buildings

and trees. Nevertheless, AWS (2007) provides the sta-

tion installer siting standards to optimize data quality.

Another source of observational error, discussed in

Daley (1993), Myrick and Horel (2006), and Bondarenko

et al. (2007), is representativeness error. This is a con-

sideration for both nonstandardized and standardized

mesonetworks, particularly where observations are sparse,

and/or whose sites are located in areas (e.g., complex

terrain, next to water) where the observed weather is not

representative of the larger scale. Several studies (e.g.,

Benjamin et al. 1999; Liu and Rabier 2002; Janjić and

Cohn 2006; Myrick and Horel 2008) have examined this

complex issue as it has important implications with respect

to model data assimilation.

Despite such limitations, nonstandardized supplemental

networks can supply critical observations that fall in the

mesoscale gaps between ASOS stations. As examples,

RWISs provide vital data on critical transportation pa-

rameters (e.g., surface roadway temperature); fuel moisture

from RAWS data is used for diagnosing fire danger, while

CWOP wind speed data are crucial during severe weather.

Moreover, these networks have been used to diagnose

mesoscale weather phenomena (Ludwig et al. 2004; Geerts

2008), assess their impact on surface analyses (Myrick and

Horel 2008), and explore their data robustness (Illton et al.

2008). Several studies have also explored the mesonet-

works’ short-term prognostic utility, for example, with

respect to convection via the Oklahoma Mesonetwork

(Hilliker et al. 2007), and sensible weather predictions by

applying MesoWest observations (Hart et al. 2004).

Yet, there has been limited effort to test the forecast

utility of nonstandardized surface observing networks, such

as the AWS. Thus, the present study’s goal is to test the

application of such a network to improve short-term fore-

casts in the context of energy forecasting. Each hour, utility

companies predict ‘‘load’’ (i.e., electricity usage) by con-

sumers (Bolzern et al. 1982; Robinson 1997; Teisberg et al.

2005). For example, higher temperatures increase load

during the summer since consumers are more likely to turn

on air conditioners. If these forecasts can be improved,

utility companies would be able to better anticipate load

(Valor et al. 2001). This, in turn, would result in greater

system reliability and profit since underestimating load

forces utilities to purchase electricity at a much higher

market price. Overestimating load, however, causes excess

electricity to go to waste since it cannot be stored. Severe

underforecasts can lead to system failure on a local or re-

gional scale. Three variables pertinent to load forecasting
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are tested: temperature, dewpoint, and wind speed. Dew-

point is more relevant during the summer as it correlates

with air-conditioning use, while wind speed is more rele-

vant during the winter as it affects heating efficiency (Rothe

et al. 2009; J. Quirk 2004, personal communication).

The methodology used to develop the forecasts is

a regression approach, where the forecast variable

(predictand) is determined using a statistical equation

constructed by linking the predictand’s most significant

variables (predictors), determined ahead of time. Hart

et al. (2004), Cosgrove and Sfanos (2004), Dallavalle et al.

(2004), Hughes (2001), Schmeits et al. (2008), Hilliker

et al. (1999), and Grover-Kopec and Fritsch (2003), among

others, have shown success using this approach. The study

differs from the latter two studies in that observations

from surrounding stations are not considered. This work,

instead, focuses on improving output from the National

Digital Forecast Database (NDFD). Myrick and Horel

(2006), Mollner (2005), and Dagostaro et al. (2004), as

examples, have demonstrated the positive impact of the

NDFD, particularly in short-term weather forecasting.

In contrast, this work will demonstrate that observations

from such a network can add value to the NDFD via

calibrated NDFD 1–12-h predictions of relevant energy

parameters. These calibrated NDFD (CNDFD) forecasts

serve as a baseline, and allow for fair testing since CNDFD

forecasts account for inherent differences between origi-

nal NDFD forecasts and AWS instrumentation and loca-

tion (e.g., those due to siting issues described previously).

The forecasts generated by this study’s technique will also

be compared to persistence climatology (PC), a commonly

used reference in short-term forecasting (Buell 1958;

Murphy 1992). Also known as conditional persistence, PC

combines the well-known strength of applying persistence

in short-term forecasting to knowledge of the variable’s

evolution for that particular time and station based on

information contained in a historical dataset (Wilks 2006).

Finally, this study will also explore the magnitudes of

improvement over CNDFD and PC forecasts as a func-

tion of AWS observing location. Forecasting over com-

plex terrain is particularly challenging. Ruth et al. (2009)

showed that gridded MOS scores were worse than sta-

tion MOS scores over complex terrain; Myrick and

Horel (2006) stated that larger temperature errors ex-

isted using Rapid Update Cycle (RUC) surface analyses

and MesoWest data over the west than average tem-

perature errors nationwide [from Benjamin et al. (2004),

using RUC analyses and ASOS data]. Observations

from the AWS network are hypothesized to provide the

greatest improvement over CNDFD and PC forecasts

for predictions at AWS sites located next to water or in

areas of complex terrain, where subgrid terrain effects

are expected to be large. This hypothesis is supported by

Hart et al. (2004), which successfully applied MesoWest

data to improve gridded model forecasts in the mountain-

ous Utah terrain. Thus, results from the present study will

support existing work by testing sites across different cli-

mates and terrains using a different network.

Section 2 presents the datasets used in this study and

their quality control. The methodology and statistical

design of the system are detailed in section 3. Section 4 is

a summary of results from the dependent dataset, while

section 5 presents results from the independent dataset.

Section 6 summarizes the work’s conclusions.

FIG. 1. Approximate surface observing sites composing the (a) ASOS network, as gray circles,

and (b) AWS network, as black circles [modified from NWS (2006) and AWS (2010)].
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2. Datasets

Hourly AWS observations and NDFD forecasts were

compiled for the 1-yr period from 15 April 2006 to 14 April

2007. Thirteen AWS stations, listed in Table 1, were

tested. The test stations represent a variety of climates

across the United States. For example, some station lo-

cations feature higher elevations [Crested Butte Mountain

Resort (MTQCR) and Dans Ferry Service (MELBA), in

the Rocky Mountains], proximity to a large body of water

[KING5 at SAFECO field (SEASF), on the West Coast],

or more homogeneous terrain with no obvious local ef-

fects (KPEAE, in Kansas).

NDFD forecasts are constructed and updated by the

various National Weather Service Weather Forecast Of-

fices (WFO). Output from operational computer models

such as the RUC (Benjamin et al. 2004), North American

Mesoscale (NAM; DiMego 2006), and short-range en-

semble forecast (SREF; Du et al. 2009) system serves as

the foundational field, and is mapped to a 2.5 km 3 2.5 km

grid. Predictions are available at 3-h intervals (0000, 0300,

0600 UTC, etc.). The forecaster can modify the model field

by applying other data, including climatic information,

ASOS observations, and mesonet observations (Glahn

and Ruth 2003). Ruth et al. (2009) have most recently

stated that gridded MOS ‘‘should provide good guidance

for preparing the NDFD.’’

In addition to forecaster and WFO variations in NDFD

generation, variations in human update frequency also

exist. All WFOs update the NDFD grids at 0400 and

1600 LT—the two traditional major updates. Human ad-

justments to the forecast, particularly for the short term,

between these cycles also occur. Compulsory 3-h NDFD

updates at all WFOs, however, are anticipated in the fu-

ture (D. Iovino 2009, personal communication). The final

NDFD forecast is disseminated and merged with other

WFO NDFD grids to form a national 5 km 3 5 km res-

olution product.

The NDFD data used in the study were obtained from

the National Climatic Data Center’s (NCDC) online Na-

tional Operational Model Archive and Distribution System

(NOMADS). An accompanying decoder ‘‘probed’’ the

data’s Gridded Binary (GRIB) format to retrieve

NDFD forecasts, bilinearally interpolated to each

AWS site’s latitude and longitude. In addition, al-

though data files are available hourly, valid forecasts are

available every 3 h (0000, 0300, 0600 UTC, etc.), consistent

with WFO construction. The following two hours’ forecasts

(e.g., those made at 0100 and 0200 UTC) are generally

a repeat of the original forecast (the 0000 UTC forecast, to

continue this example) until the next 3-hourly data point is

available (0300 UTC, to complete the example).

Next, AWS and NDFD data that were missing or failed

quality control (QC) checks were removed from analysis.

This critical step ensures that the forecast system dem-

onstrated in this study can extract the strongest statistical

signals contained in the historic datasets. AWS employs

an in-house QC technique for its data (J. Dutton 2007,

personal communication); however, to verify the robustness

of both datasets, tolerance limits from the NWS’s Quality

Control and Monitoring Systems (QCMS) were applied

(NWS 1993). Moreover, spatial consistency between AWS

and collocated NDFD data was examined to reveal any

obvious AWS siting issues. One flagged dataset was SEASF

wind speed, which was consistently and anomalously lower

(;0.6 m s21 average over the 1-yr sample) than sur-

rounding ASOS observations and NDFD forecasts (;3.0

m s21 average over the same period). Thus, SEASF wind

speed forecasts were not analyzed in the study. Neverthe-

less, the AWS and NDFD archives were generally robust,

with ;7% of the data deemed bad or missing.

3. Statistical design of forecast system

Hourly deterministic forecasts of temperature, dew-

point, and wind speed were made for each AWS station

TABLE 1. Summary of AWS station identifiers tested with geographical data.

AWS identifier Station name Station location Lat (8N) Lon (8W) Elev (m)

BRTTN Bretton Woods Ski Resort Bretton Woods, NH 44.26 71.44 499

LRAY1 Shenandoah National Park Big Meadows, VA 38.52 78.44 1052

PHLRH Rohm and Haas Spring House, PA 40.18 75.20 98

RBBPH Boardwalk Plaza Hotel Rehoboth Beach, DE 38.72 75.08 16

WIVBT WIVB-TV Station Buffalo, NY 42.95 78.88 200

RCHSC Seton Catholic High School Richmond, IN 39.82 84.89 285

CHINM P. Notebaert Nature Museum Chicago, IL 41.92 87.63 179

BRRRD Burr Ridge Middle School Burr Ridge, IL 41.72 87.95 212

WNTRE Wintergreen Mountain Wintergreen, VA 37.92 78.94 1028

MTQCR Crested Butte Mountain Resort Crested Butte, CO 38.90 106.97 2843

MELBA Dans Ferry Service Melba, ID 43.35 116.60 853

SEASF KING5 at SAFECO field Seattle, WA 47.59 122.33 20

KPEAE Peabody-Burns Elementary School Peabody, KS 38.17 97.10 423
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for all forecast hours (0000–2300 UTC) for four lead

times, ranging from 1 to 12 h. Table 2 summarizes the

permutations of tested forecast hours, lead times, and

resultant valid times. For example, a forecast made at

1900 UTC had four discrete lead times of 2, 5, 8, and

11 h, corresponding to valid times of 2100, 0000, 0300,

and 0600 UTC, respectively. These particular valid times

allow the most recently updated NDFD to be tested.

a. Generation of forecasts

Forecasts were generated by, first, linking the most

significant predictors from the AWS and NDFD datasets

using a generalized additive model (GAM) to form fore-

cast equations. The equation’s predictand, or forecast

variable, is simply the AWS observation at the valid time.

Generalized additive models are a nonparametric mod-

eling technique that extends traditional multiple linear

regression by objectively estimating the functional (cur-

vative) relationship between the predictand and predictors

(S-PLUS 2001; Vislocky and Fritsch 1995). As Vislocky

and Fritsch (1995) summarized, ‘‘GAM fits a model as

a sum Y of unspecified functions of the individual pre-

dictors Xn,

Y ’ f
1
(X

1
) 1 f

2
(X

2
) 1 � � �1 f

n
(X

n
), 00 (1)

where the nonparametric functions fi (for i 5 1, . . . , n)

are estimated from the data using smoothing operations

(e.g., kernels, running means, splines). In this study, the

cubic smoothing spline is employed. Vislocky and Fritsch

(1995) showed that by using the cubic smoothing spline

function in GAM, the mean square errors of short-term

cloud cover, ceiling, and visibility forecasts were 3%–4%

lower when compared to forecasts generated using mul-

tiple linear regression.

Figure 2 shows an example cubic smoothing spline

from the study’s dependent dataset. One of the pre-

dictands (Y)—1200 UTC wind speed at MELBA—was

plotted against the predictor variable (X1)—a 9-h NDFD

forecast of MELBA wind speed. Note that the cubic

spline captures the modest nonlinearity in the variables’

relationship. For a detailed discussion on GAMs and the

cubic smoothing spline, the reader is encouraged to review

De Boor (1978), Hastie and Tibshirani (1990), and

Vislocky and Fritsch (1995).

For each weather parameter, three equations were gen-

erated for each combination of forecast hour (of which

there were 24, ranging from 0000 to 2300 UTC) and lead

time (of which there were 4, ranging from 1 to 12 h, as

explained above). The first member of each trio was that

of the baseline-calibrated NDFD (CNDFD) forecasts.

These one-predictor equations incorporated the original

NDFD prediction corresponding to the forecast lead time.

For example, the 1900 UTC CNDFD forecast equation

for an 8-h lead time (i.e., 0300 UTC valid time) was

AWS 0300 UTC observation

’ f (NDFD forecast valid at 0300 UTC), (2)

where f(�) is the GAM nonparametric smoothing func-

tion discussed previously. The second member of each

equation trio incorporated all predictors chosen by a

stepwise regression method for that forecast hour. These

equations were used to generate the final forecasts (re-

ferred to as CNDFD1, hereinafter). The 1900 UTC

CNDFD1 forecast equation for an 8-h lead time was

AWS 0300 UTC observation

’ f
1
(X

1
) 1 f

2
(X

2
) 1 � � �1 f

n
(X

n
), (3)

where Xi (for i 5 1, . . . , n) were the set of predictors

chosen by stepwise regression (including both NDFD

and AWS predictors), and fi (for i 5 1, . . . , n) as pre-

viously defined.

TABLE 2. Exhaustive permutations of forecast hours (UTC

without lead or trailing 00), lead times (h), and corresponding valid

times (UTC without lead or trailing 00) tested. As an example, one

1900 UTC forecast has an 8-h lead time, or corresponding

0300 UTC valid time.

Forecast hour

Lead times

(h)

Valid times,

respectively

00 3, 6, 9, 12 03, 06, 09, 12

01 2, 5, 8, 11 03, 06, 09, 12

02 1, 4, 7, 10 03, 06, 09, 12

03 3, 6, 9, 12 06, 09, 12, 15

04 2, 5, 8, 11 06, 09, 12, 15

05 1, 4, 7, 10 06, 09, 12, 15

06 3, 6, 9, 12 09, 12, 15, 18

07 2, 5, 8, 11 09, 12, 15, 18

08 1, 4, 7, 10 09, 12, 15, 18

09 3, 6, 9, 12 12, 15, 18, 21

10 2, 5, 8, 11 12, 15, 18, 21

11 1, 4, 7, 10 12, 15, 18, 21

12 3, 6, 9, 12 15, 18, 21, 00

13 2, 5, 8, 11 15, 18, 21, 00

14 1, 4, 7, 10 15, 18, 21, 00

15 3, 6, 9, 12 18, 21, 00, 03

16 2, 5, 8, 11 18, 21, 00, 03

17 1, 4, 7, 10 18, 21, 00, 03

18 3, 6, 9, 12 21, 00, 03, 06

19 2, 5, 8, 11 21, 00, 03, 06

20 1, 4, 7, 10 21, 00, 03, 06

21 3, 6, 9, 12 00, 03, 06, 09

22 2, 5, 8, 11 00, 03, 06, 09

23 1, 4, 7, 10 00, 03, 06, 09
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The final equation in the trio constructed for each fore-

cast hour, lead time, and predictand is a second reference

set of forecasts to which those of the CNDFD1 can be

compared—persistence climatology. The 1900 UTC PC

forecast equation for an 8-h lead time (i.e., 0300 UTC valid

time) is defined as

AWS 0300 UTC observation

’ f (AWS 1900 UTC observation), (4)

where f (�) is previously defined.

b. Obtaining significant predictors

Table 3 lists the candidate predictors considered for

short-term forecasting of temperature. Intuitively, the

most promising variables to consider include the most

recent (time 5 0) temperature observation (T0), as well

as the most recent relative humidity, wind components,

and past temperature observations. Equally as critical

is considering the suite of NDFD 1–12-h forecasts. To

continue the example above, the 1900 UTC forecast

with an 8-h lead time considers, among other predictors,

the NDFD forecast valid at 0300 UTC (annotated as

NDFD7–9, where ‘‘7–9’’ represents the block of lead

times in which the forecast projection falls).

The AWS and NDFD data archives were divided as

follows: days 1–23 of each month were dedicated to the

larger dependent (or developmental) dataset from

which the strongest predictors for short-term temper-

ature, dewpoint, and wind speed forecasting were de-

rived. The balance of the month was committed to the

smaller independent dataset used to test the resultant

forecast system.

The statistical software package S-PLUS was used to

ascertain the set of optimal predictors, their f values

(degree of linear association with the predictand), and

ranking order (S-PLUS 2001). To obtain the optimal set

of predictors, the ‘‘Efroymson’’ method was selected

as the stepwise regression procedure (Efroymson 1960;

Martin et al. 1963). This method is similar to a forward

selection procedure in that a predictor is chosen based

on its ability to produce independently the largest re-

duction in the residual sum of squares. However, when

a new predictor is added to the subset, the Efroymson

method determines if any of the previously selected

predictors in the subset no longer contributes signifi-

cantly to the modeled fit. If this is the case, the irrelevant

predictor is eliminated from the regression equation.

In addition, the number of predictors to include in the

forecast system depends on a prescribed ‘‘cutoff’’ f value

( fc). As specified in comparable studies, an fc of 10 was

applied here (Hilliker et al. 2007). Once the absolute

value of the f value of the next significant predictor falls

below fc, no additional predictors are included, and the

equation is finalized. Although it may be tempting to

include many predictors to achieve the best modeled fit,

the risk of ‘‘overfitting’’ increases. Overfitting is defined

as only including predictors meaningful to the depen-

dent dataset, which results in degraded performance

when applied to the independent dataset. Additional

information on stepwise regression, choosing f values,

and overfitting can be found in Wilks (2006) and Neter

et al. (1996).

4. Dependent data results

It is instructive to first explore which predictors from the

dependant dataset were chosen by stepwise regression.

FIG. 2. Example cubic smoothing spline fit of observed 1200 UTC

MELBA wind speed (y axis) vs its 9-h NDFD forecast (x axis).

TABLE 3. Description of candidate predictors tested and their

notations.

Predictor Notation

Current temperature T0

Temperature 1 h ago T21

Temperature 2 h ago T22

Current RH RH0

Current dewpoint TD0

Current wind direction DD0

Current wind speed FF0

Current precipitation (yes/no binary predictor) P0

Current U component of wind U0

Current V component of wind V0

NDFD 1–3-h forecast NDFD1–3

NDFD 4–6-h forecast NDFD4–6

NDFD 7–9-h forecast NDFD7–9

NDFD 10–12-h forecast NDFD10–12
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Table 4 shows a sampling of the final temperature, dew-

point, and wind speed predictors included in the forecast

system for the P. Notebaert Nature Museum (CHINM).

Predictors are listed in order of benefit, with the first

predictor being the most highly correlated to the pre-

dictand. The nature, order, and number of predictors

(typically, 2–4) were consistent for other AWS stations.

One of the most noteworthy results in the final pre-

dictor list is the tendency for the most recent AWS ob-

servation to be weighted more heavily for shorter lead

times and NDFD output for longer lead times. In addi-

tion, the most beneficial NDFD predictors are typically

those that correspond to the lead time (i.e., NDFD7–9 for

a 9-h lead time with dewpoint). There are exceptions

(e.g., NDFD4–6 for a 3-h 1200 UTC temperature fore-

cast), however, that incorporate supplemental lead times.

The additional independent information implied by the

presence of multiple NDFD predictors may be the result

of the system recognizing the benefit of the currently

quasi-irregular human NDFD updates.

The limitations of short-term wind speed forecasting

are also evident in Table 4. Even at the 3-h lead time, the

most recent wind speed observation (FF0) is generally

absent. In fact, there is an overall lack of supplemental

predictors for wind speed regardless of forecast or lead

time. One additional result of note is the presence of the

wind components (U0 and V0) as valuable predictors for

forecasting temperature, and to a lesser degree dew-

point, for CHINM, a site located near Lake Michigan.

A sample of the chosen predictors for MTQCR (see

Table 5), the AWS site highest in elevation (;2800 m)

from the sample, supports the importance of using

observations to modify NDFD forecasts, particularly

where local effects dominate. The table is populated with

more observational predictors, even through lead times

of 12 h.

5. Independent data results

To assess CNDFD1 forecast quality, the mean abso-

lute error (MAE) was compared for the CNDFD1,

CNDFD, and PC forecasts1 using the independent data-

set, which yielded ;700 cases for each lead time. Sup-

plemental metrics of forecast assessment could also be

applied, as detailed in Wilks (2006). Figure 3 shows

the MAE of CNDFD1, CNDFD, and PC temperature,

dewpoint, and wind speed predictions as a function of lead

time for a sampling of AWS sites. Results for each lead

time were averaged over the eight (0000, 0300, 0600 UTC,

etc.) valid times shown in Table 2.

The average CNDFD1 temperature MAE for

CHINM, a typical example, was 0.68C for a 1-h lead time

and increased asymptotically to 1.88C by 12 h. For com-

parison, baseline CNDFD forecast error was largely in-

dependent of lead time (MAE ; 1.88C for the 1–12-h

lead times). Notable variations in CNDFD MAE with

respect to valid time, however, exist. For example, for 12-h

forecasts valid at 2100 UTC, the MAE was ;1.48C, but

increased to ;2.28C for 12-h forecasts valid at 0900 UTC.

Myrick and Horel (2006) hypothesize causes of the di-

urnal variation in NDFD error.

TABLE 4. A sampling of the strongest predictors as a function of forecast hour (UTC without lead or trailing 00) and lead time for

temperature, dewpoint, and wind speed forecasting for CHINM. Predictors are listed in order of decreasing power. Predictor notation is

referenced in Table 3.

Temperature

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 T0, NDFD7–9 NDFD4–6, T0 NDFD4–6, T0 NDFD10–12, T0

T21 U0, T21 NDFD1–3, U0 U0

12 T0, NDFD4–6 NDFD4–6, T0, V0 NDFD7–9, V0 NDFD7–9, V0

T21

Dewpoint

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 TD0, NDFD4–6 TD0, NDFD4–6 NDFD7–9, RH0 NDFD10–12, RH0

12 TD0, NDFD4–6 NDFD4–6, TD0 NDFD7–9, U0 NDFD10–12, U0

U0 TD0 T0

Wind speed

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 NDFD1–3 NDFD4–6, V0 NDFD7–9 NDFD10–12, RH0

12 NDFD1–3, FF0 NDFD10–12 NDFD10–12 NDFD10–12

1 Any wind speed forecast that was ,0 m s21 was truncated to

0 m s21.

JULY 2010 H I L L I K E R E T A L . 1403



The MAE of the reference PC forecasts was similar in

magnitude to that of the CNDFD1 forecasts for the 1-h

lead time, but exhibited an error rate much faster with

lead time than corresponding CNDFD1 forecasts. By

5 h, PC forecasts were less accurate than CNDFD fore-

casts. Dewpoint results exhibited magnitudes and patterns

similar to those of temperature, although for SEASF, PC

forecast accuracy did not degrade as quickly with lead

time as compared to CNDFD1 (see Fig. 3). By the 10-h

lead time, PC predictions became less accurate than the

baseline CNDFD forecasts. For wind speed, the CNDFD

forecast error at the Bretton Woods Ski Resort (BRTTN)

averaged 1.1–1.2 m s21. Incorporating supplemental AWS

observations and NDFD output decreased the MAE to

0.8 m s21 at the 1-h lead time. Beyond the 10-h lead

time, however, no improvements in CNDFD1 forecast

accuracy (and, in fact, a slight worsening) occurred.

Corresponding PC errors were nearly identical to those

of the CNDFD1 for the 1–3-h lead times, after which an

increasing loss of accuracy relative to CNDFD1 was

demonstrated. In contrast to dewpoint, PC predictions

of wind speed by the 5-h lead time became less accurate

than the baseline CNDFD predictions.

a. CNDFD1 forecast skill

Alternatively, the above results can be translated into

CNDFD1 percent improvements (i.e., MAE reduc-

tion; forecast skill). Figure 4 shows the improvements

of adding AWS observations and supplemental NDFD

forecasts to the calibrated NDFD forecast (i.e., skill of

CNDFD1 predictions relative to corresponding CNDFD

predictions). The figure plots each AWS station’s skill

as a function of lead time for each parameter, with the

black line an average over all tested sites. Several points

can be gleaned from Fig. 4. As one might expect, an

exponential decrease in skill with lead time occurs for

all three parameters. Percentage improvements for tem-

perature and dewpoint are comparable in magnitude,

averaging 65% (0.65 translated as a skill score) at the 1-h

lead time, exponentially decreasing to 20%–28% at the

6-h lead time, and 6%–7% by 12 h. Wind speed skill is

markedly lower, averaging 22% at the 1-h lead time, and

dropping ,5% for forecasts beyond 5 h. Most stations

show no CNDFD1 skill in wind speed beyond this

time—a reflection of the high variability, and thus low

predictability, of this variable.

Figure 5 presents CNDFD1 skill over reference PC

forecasts. For the 1-h lead time, CNDFD1 forecast skill

is tantamount to PC skill for dewpoint and wind speed,

with a ;10% improvement for temperature. Regardless

of parameter, CNDFD1 percent improvements gradu-

ally increase with lead time, consistent with Fig. 3, which

revealed PC error increasing more rapidly than corre-

sponding CNDFD1 error. By 6 h, CNDFD1 temper-

ature improvements are 28%, and reach 36% by 12 h.

Dewpoint and wind speed improvements are less, in-

creasing to 16% and 12%, respectively, at the 6-h lead

time, and slightly higher thereafter. Overall, Figs. 4 and 5

imply that PC remains a powerful forecast technique for

the ultrashort-term (1–3 h) lead times, and that baseline

CNDFD forecasts demonstrate value (i.e., have skill

similar to CNDFD1 forecasts) for the longer lead times

tested in this study. This result suggests that nonstan-

dardized observations provide the greatest value relative

TABLE 5. As in Table 4, but for MTQCR.

Temperature

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 T0, RH0, T22, NDFD10–12 T0, NDFD7–9 T0, NDFD7–9, TD0, T22 T0, TD0

RH0, T22 NDFD10–12, T22

12 NDFD7–9, T0, P0, NDFD1–3, U0, TD0 NDFD7–9, T21, NDFD1–3, FF0 NDFD7–9, NDFD1–3, T22 NDFD7–9, RH0

Dewpoint

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 TD0 TD0, NDFD10–12 TD0, NDFD10–12 TD0, NDFD10–12

12 TD0, T0, FF0 TD0, T0 TD0, RH0 TD0, RH0

NDFD10–12

Wind speed

Forecast hour 3-h lead time 6-h lead time 9-h lead time 12-h lead time

00 FF22, NDFD4–6, FF0 FF0,V0 NDFD1–3, FF22 NDFD7–9, T0

NDFD7–9, U0

12 U0,V0 NDFD7–9, U0 NDFD10–12 NDFD10–12

T0, NDFD1–3 T0
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to CNDFD and PC [greatest relative accuracy (GRA)

hereafter] for the middle lead times tested.

The lead time at which the GRA occurs (LTGRA,

hereafter) can be objectively determined by first su-

perimposing the CNDFD and PC curves in Figs. 4 and 5,

respectively, as constructed in Fig. 6. The next step is to

highlight the segment of each curve indicating which of

these two references for each lead time is more accurate

(in this context, possessing a skill score closer to 0 since

0 implies skill equivalent to CNDFD1). Figure 6 shows

the blackened line for each parameter. The point at

which the black line ‘‘jumps’’ from the PC to CNDFD

curve—alternatively, when the black line reaches max-

imum skill—reveals the LTGRA. As Fig. 6 shows, the

FIG. 3. MAE of (top) temperature at CHINM, (middle) dewpoint

at SEASF, and (bottom) wind speed at BRTTN between verification

and CNDFD1 forecasts (black solid line with squares), baseline

CNDFD forecasts (gray solid line with circles), and PC forecasts

(gray dashed line with triangles) as a function of lead time.

FIG. 4. Percent improvements of CNDFD1 forecasts over

baseline CNDFD forecasts for (top) temperature, (middle) dew-

point, and (bottom) wind speed as a function of lead time for each

AWS station. Tested stations with the highest elevations are

dashed in gray. The black line with squares is an average over all

tested AWS stations.
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LTGRA for all three parameters are in the middle lead

times, ranging from 3–5 h for temperature and wind

speed to 6–7 h for dewpoint. Note that percent im-

provements at each parameter’s LTGRA are in a differ-

ent order—highest (23%) for temperature and lowest

(6%) for wind speed.

An alternative method for assessing CNDFD1 fore-

cast quality that integrates the suite of 1–12 lead times is

to calculate the area under the black line (hatched area

in Fig. 6). This ‘‘relative skill’’ (RS) can be expressed

mathematically as an average:

RS 5

�
12

lt51
Min[CNDFD(lt), PC(lt)]

12
,

where lt is lead time and ‘‘Min[CNDFD(lt), PC (lt)]’’

is the minimum in percent improvement magnitudes of

either CNDFD1 relative to CNDFD, or CNDFD1 rel-

ative to PC, as a function of lead time. The denominator

allows the RS to be interpreted similarly to skill score:

RS 5 1 implies perfect value relative to the references;

RS 5 0 implies no value. Values of RS derived from Fig. 6

are 0.14 for temperature, 0.09 for dewpoint, and 0.03 for

wind speed.

b. AWS siting variations

A station-by-station analysis of Figs. 4 and 5 reveals

location-dependent differences in CNDFD1 forecast

quality. Relative to CNDFD, CNDFD1 skill in fore-

casting temperature is greatest for MTQCR, BRTTN,

Shenandoah National Park (LRAY1), and Wintergreen

Mountain (WNTRE) (dashed, gray curves in Fig. 4).

Table 1 shows that these four sites are a subset of the

five highest elevation sites tested, with MELBA as the

remaining site. Further exploration reveals higher-than-

average CNDFD errors with these stations, implying the

observations’ effectiveness when adjusting CNDFD tem-

perature forecasts in complex terrain. Spread in skill

among stations is also evident with dewpoint and wind

speed, with individual stations behaving differently. A

weaker relationship exists between CNDFD1 perfor-

mance and altitude for dewpoint, although skill of the

higher-altitude stations remains near or above the

13-station average. No conclusive relationship exists

for wind speed. A review of CNDFD1 performance

(not shown) for stations located next to water [e.g.,

CHINM and Boardwalk Plaza Hotel (RBBPH)] also

reveals only a weak correlation.

There are also AWS siting variations in CNDFD1

performance relative to PC, as Fig. 5 shows. The most

striking pattern is that the majority of the higher-altitude

stations, which demonstrated above-average performance

relative to CNDFD, are below average relative to PC.

This result suggests that the current observation of the

forecast parameter at these sites is relatively more pow-

erful than at the tested sites, and that the higher-altitude

sites’ auxiliary observations and NDFD forecasts are rel-

atively less beneficial. This pattern seems to be most

apparent for wind speed, in contrast to the lack of corre-

lation between complex terrain sites and performance

relative to CNDFD.

FIG. 5. As in Fig. 4, but percent improvements of CNDFD1

forecasts over reference PC forecasts.

1406 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 49



Table 6 summarizes each AWS station’s LTGRA.

Notable spread in values among locations is evident.

Those stations with local effects generally have longer

LTGRA values (e.g., 10.5 h at MTQCR for temperature;

5.0-h RBBPH wind speed), while those with no apparent

local effects typically have shorter LTGRA values [e.g.,

3.5-h Rohm and Haas (PHLRH) temperature; 4.5-h

Peabody-Burns Elementary School (KPEAE) dew-

point]. Table 6 also shows the RS for each station for

each parameter. The RS provides forecast quality in-

formation independent of the LTGRA since the indices

have some, but not perfect, correlation. For example,

when compared with KPEAE (a site in Kansas with no

apparent local effects), WNTRE (a site located atop

Wintergreen Mountain in Virginia) consistently has a

longer LTGRA. On the other hand, RS values for dew-

point and wind speed at WNTRE are nearly identical to

those of KPEAE.

6. Concluding remarks

This study’s objective was to test the utility of a non-

standardized surface observing network, such as the

AWS, to improve 1–12-h calibrated NDFD (CNDFD)

forecasts of energy parameters, including temperature,

dewpoint, and wind speed. A sample of 13 AWS sta-

tions, located in varying terrain and proximity to water

across the nation, was chosen to also explore relation-

ships between forecast performance and AWS loca-

tion. Forecasts were constructed by applying GAM, and

allowing cubic smoothing splines to capture the non-

linearities between the predictand and its most significant

predictors, ascertained using stepwise regression. Fore-

casts were then compared to two references: corresponding

baseline CNDFD and PC forecasts. The main conclu-

sions from this study follow:

d CNDFD1 forecast skill relative to PC increased

slowly with lead time for all parameters. For dewpoint

and wind speed, CNDFD1 forecast quality was com-

parable (,5%) to PC for the ultrashort-term (1–3) lead

times, increasing to ;10%–15% by the 12-h lead time

for wind speed and ;25% for dewpoint. CNDFD1

temperature predictions relative to PC were modestly

more skillful: ;10% at the 1-h lead time, increasing to

;30% for lead times of 12 h.
d Averaged over all tested AWS stations, CNDFD1

temperature and dewpoint forecasts showed a 65%

improvement in MAE over corresponding baseline

CNDFD forecasts at the 1-h lead time. Forecast quality

exponentially dropped to ;20%–25% improvement

for temperature and dewpoint by lead times of 6 h. By

12 h, CNDFD1 temperature and dewpoint forecasts

were only marginally superior (6%–7% improvement)

to CNDFD.
d AWS observations were only effective for improving

CNDFD wind speed forecasts for the ultrashort-term

FIG. 6. Percent improvements of CNDFD1 forecasts over

CNDFD forecasts (solid line with squares) and reference PC

forecasts (dashed line with triangles) for (top) temperature,

(middle) dewpoint, and (bottom) wind speed as a function of lead

time. Data are averaged over all tested AWS stations. The black-

ened segment of each curve indicates whether CNDFD or PC is

more accurate for that particular lead time. The lead time where the

black line reaches maximum improvement is marked LT(GRA).

The RS is derived from the shaded area.
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lead times as CNDFD1 wind speed improvements

were notably less skillful than temperature or dew-

point: an ;20% improvement at the 1-h lead time,

decreasing to ,5% by 4 h.
d The greatest CNDFD1 accuracy relative to both

CNDFD and PC was demonstrated for the middle

lead times (LTGRA 5 3–7 h) tested in the study. The

RS, a parameter designed to quantify the skill of

CNDFD1 forecasts relative to CNDFD and PC, was

highest (0.14) for temperature and lowest (0.03) for

wind speed.
d Notable variations in CNDFD1 skill existed with re-

spect to AWS location. The majority of the tested

stations located in complex terrain generally showed

forecast improvements relative to CNDFD greater

than the 13-station average for temperature (and, to

a lesser degree, dewpoint). Relative to PC, however,

the majority of the sites located in complex terrain

exhibited improvements below the 13-station average

for all parameters.
d No conclusive relationship can be made between

CNDFD1 forecast skill and the tested stations lo-

cated near water, where local effects might influence

the sensible weather.
d Siting variations in LTGRA and RS values were also

apparent, with some higher-altitude stations demon-

strating a maximum skill relative to NDFD and PC

beyond 8 h. Other sites, however, had wind speed RS

values ;0.00, revealing the lack of success of this

technique for certain weather parameters and locations.

Overall, this study supports the potential benefits of

nonstandardized surface networks and mesonetworks in

constructing skillful short-term operational forecasting

products (e.g., Hart et al. 2004; NDFD-derived gridded

MOS), with an emphasis here in adjusting calibrated

NDFD forecasts. Based on a 1-yr data sample and 13

AWS sites, techniques employed in this work suggest

that surface observations provide the greatest value for

lead times of ;3–7 h. For shorter lead times, persistence

climatology is a sensible strategy, while the impact of

observations diminishes for longer lead times.

It is also suggested that this technique demonstrates

added skill relative to the NDFD for locations in complex

terrain, where local effects dominate and whose topog-

raphy may not be well resolved in dynamic models. This

result is particularly favorable for energy companies

whose supply domain includes a moderate amount of

complex and/or high terrain, such as Energy West in

Montana and Wyoming. Conversely, the benefit will not

be as great for those companies where the percentage of

complex terrain, and thus population to impact load, is

limited. Because some skill was shown for temperature

and dewpoint, skillful heat index forecasts using non-

standardized observations may also be generated. On the

other hand, the general lack of skill in forecasting wind

speed may limit the observations’ value during the winter

in predicting wind chill.

It is reasonable to assume that the CNDFD1 im-

provement magnitudes ascertained in this study will de-

crease once NDFD forecasts are available hourly. Further

changes in skill are anticipated once all WFOs update

the NDFD grids every 3 h. With these modifications,

additional and/or more precise NDFD predictors (e.g.,

NDFD8, rather than the current NDFD7–9, for an 8-h

forecast) may be included in the forecast equations.

Although the AWS data used in the study are propriety,

NRC (2008) includes a host of supplemental and publicly

accessible networks and mesonetworks that are of com-

parable density, coverage, and quality to the AWS. These

TABLE 6. LTGRA (h) and RS for temperature, dewpoint, and wind speed of each tested AWS station. The bottom row represents the

values combining all stations.

AWS identifier Temperature—LTGRA (RS) Dewpoint—LTGRA (RS) Wind speed—LTGRA (RS)

BRTTN 9.5 (0.134) 7.0 (0.056) 4.5 (0.026)

LRAY1 7.0 (0.128) 6.5 (0.071) 7.0 (0.017)

PHLRH 3.5 (0.110) 4.5 (0.066) 3.5 (0.033)

RBBPH 6.5 (0.108) 11.0 (0.104) 5.0 (0.078)

WIVBT 4.0 (0.115) 4.0 (0.048) 2.0 (0.015)

RCHSC 3.0 (0.108) 4.5 (0.103) 2.5 (0.026)

CHINM 4.5 (0.107) 5.5 (0.054) 3.0 (0.009)

BRRRD 3.5 (0.149) 5.5 (0.091) 2.0 (0.003)

WNTRE 7.0 (0.127) 6.5 (0.064) 4.5 (0.017)

MTQCR 10.5 (0.169) .12.0 (0.079) 3.0 (0.003)

MELBA 3.0 (0.094) .12.0 (0.080) 3.0 (0.063)

SEASF 6.0 (0.129) 10.0 (0.064) — (—)

KPEAE 3.0 (0.099) 4.5 (0.062) 2.0 (0.023)

All stations 4.5 (0.140) 6.5 (0.090) 3.5 (0.030)
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networks add to the available sources for users wishing to

incorporate observations in applications such as the one

demonstrated here. Additional options are expected in

the future as a national ‘‘network of networks’’ that relies

on both proprietary and nonproprietary data evolves.

It is worth emphasizing that the use of AWS, or any

supplemental network of surface observations, has limita-

tions in adjusting a forecasting product such as the NDFD.

The coverage of station observations is fractional when

compared to the areal extent the NDFD offers across the

United States. As such, the technique demonstrated here

can only be applied where stations are available.

Thus, this work’s future direction includes exploring the

observations’ radii of influence in improving nearby

NDFD gridded forecasts. The present study can also be

extended by assessing CNDFD1 forecast improvement

by including potential predictors from surrounding sites.

Another opportunity would be to employ temporal and

spatial correlation errors to improve short-term NDFD

predictions of energy parameters. Finally, additional work

spurred by the success of gridded MOS would test the

nascent product’s utility when its output is complemented

with that of the NDFD and observations from AWS and/

or comparable surface observing networks.
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