West Chester University

Digital Commons @ West Chester University

Economics & Finance Student Work

Economics & Finance

4-27-2020

Demographics of Opioid Prescriptions

Isaac Linton

Simon Condliffe

Follow this and additional works at: https://digitalcommons.wcupa.edu/econ_stuwork

Part of the Pharmacoeconomics and Pharmaceutical Economics Commons

Demographics of Opioid Prescriptions

Isaac Linton
Faculty Mentor: Dr. Simon Condliffe
Department of Economics and Finance
West Chester University of Pennsylvania

Research Question

- What?
 - Ohow do race and socioeconomic status predict opioid abuse? How do prescription and overprescription, and poverty and unemployment interact across race and SES?
 - How do racial and socioeconomic factors affect initial prescription?
- Why?
 - Opioid epidemic is a pressing issue (spiking overdose deaths)
 - Missions trips Spring and Summer 2018 in Philadelphia
 - Understanding the gravity of the issue
 - Interested in working on the issue, to improve quality of life and find solutions

Literature Review

- Journal of Health Economics: Macroeconomic Conditions and Opioid Abuse (2017)
 - Unemployment rate: proxy for macroeconomic conditions
 - Emergency Department visits and mortality data
 - Change in drug deaths has affected whites, while hispanic and black overdose rates held constant
 - "1% increase in unemployment increases predicted opioid-involved mortality rates by [3.6%]"

Strength

- Demographics
- Limitation
 - \circ Mortality data \rightarrow symptom, not cause
 - Prescription: source of epidemic, gateway

Literature Review (cont'd)

- Brookings Papers on Economic Activity: Where Have All the Workers Gone? (2017)
 - Declining labor force participation rate "has fallen more in U.S. counties where relatively more opioid pain medication is prescribed"
 - Prime-age men are not in the labor force due to pain that causes them to miss work
- Strength
 - Demographic affected: working males
- Limitation
 - Drills down to counties, but not individual demographics
 - Need for more demographic info to determine causal link between opioids and labor force
 - See if the same demographics out of labor force are the ones receiving opioids

Methods

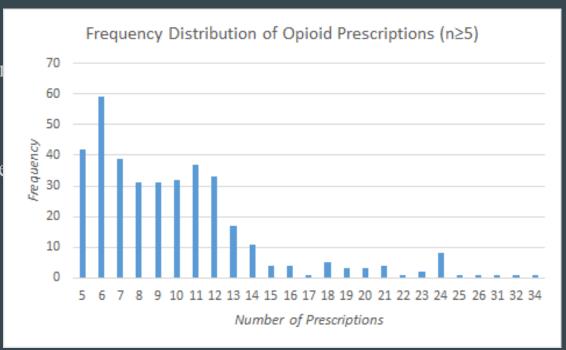
- Yp = f(Xa, Xa2, Xs, Xr, Xi, Xreg, Xe, Xm, Xpov)
 - Where Yp = Patient received Opioid Prescription
 - X= Age, age^2, sex, race, insurance status, region, educ. attainment, military status, poverty index
- Prediction: differences in opioid prescriptions across races and income levels
 - Expect to see white, low education, low income
- Looking at a cause of the opioid epidemic to stop it at the source
- Data Set: Medical Expenditures Panel Survey (2017)
 - Nationwide, representative cross-section
 - Prescribed Medicines
- Variable: Poverty Index: essentially income per capita for households
- Regression Models
 - Linear Probability Model: adults; similar to Ordinary Least Squares, for binary dependent variable
 - Logistic Regression: all survey participants

Descriptive Statistics

Yariable	Minimum	Mean	Mazimum	Std Dev	E z p. Sign	Yariable	Minimum	Mean	Mazimum	Std Dev	E z p. Sign
N=31880											
Opioid	0	0.0	1	0.2		doctorate	0	0.0	1	0.1	-
Count	0	0.2	34	1.2		otherdeg	0	0.2	1	0.4	
SEX	0	0.5	1	0.5	-	REGION17	-1	2.7	4	1.0	
RACEVIX	1	1.6	6	1.2		midwest	0	0.2	1	0.4	
black	0	0.2	1	0.4	-	south	0	0.4	1	0.5	+
amerind	0	0.0	1	0.1		west	0	0.3	1	0.4	-
asian	0	0.1	1	0.2		privins	0	0.6	1	0.5	+
mrace	0	0.0	1	0.2		pubins	0	0.3	1	0.5	+
ACTDTY31	-9	2.6	4	1.0	+	POVCAT17	1	3.4	5	1.5	
military	0	0.0	1	0.0	+	poor	0	0.2	1	0.4	+
HIDEG	-9	4.3	8	2.7		nearpoor	0	0.1	1	0.2	+
nodegree	0	0.1	1	0.4	+	lowing	0	0.2	1	0.4	-
GED	0	0.0	1	0.2		highine	0	0.3	1	0.5	+
bachelors	0	0.1	1	0.3	-	AGE17X	-1	37.4	85	23.4	+
masters	0	0.1	1	0.2	-	agesq	0	1948.0	7225	1918.9	

Descriptive Statistic Observations

- One outlier in the data set had 34 opioid prescriptions in the year 2017
- Average: 0.2 prescriptions
- Relative spike at 24; could be explained by allocation of two prescriptions/month



Regression Statistics (Linear Probability Model)

- Dependent Variable: Received Opioid Prescription (Y/N) (Dummy Variable)
- Observations: Adults only
- R-square: can be explained by cross-sectional data
 - More years of data would dramatically improve R-square

R-Square	0.0236
Adj R-Sq	0.0226
F Value	24.2300
$\mathbf{Pr} > \mathbf{F}$	<.0001
Number of Observations	23091.0000

Results

	Model: Linear	Model: Logit	Model: Logit	
Independent Variables	Parameter Estimate	Estimate	Odds Ratio Estimates	
Intercept	-0.0665	-6.8726		
male	-0.0148	-0.3342	0.716	
black	-0.0038	-0.0685	0.934	
american indian	0.0026	0.0218	1.022	
asian	-0.0267	-1.0201	0.361	
mixedrace	-0.0050	-0.1053	0.900	
military	0.0024	-0.0486	0.953	
nodegree	-0.0083	-0.1094	0.896	
GED	0.0161	0.3059	1.358	
bachelors	-0.0090	-0.1692	0.844	
masters	-0.0159	-0.3497	0.705	
doctorate	-0.0060	-0.0864	0.917	
otherdeg	0.0083	0.1810	1.198	
midwest	0.0062	0.0302	1.031	
south	0.0100	0.0831	1.087	
west	-0.0060	-0.2126	0.809	
private insurance	0.0279	0.9129	2.491	
public insurance	0.0471	1.1907	3.289	
poor .	0.0091	0.1647	1.179	
nearpoor	0.0210	0.3828	1.466	
lowinc	0.0069	0.1433	1.154	
highinc	-0.0068	-0.1452	0.865	
age	0.0029	0.1022	1.108	
agesq	0.0000	-0.0007	0.999	

1% significance level 5% significance level 10% significance level

Interpreting Results (Linear Probability Model)

- Gender: males are 1.5% less likely than females to receive an opioid prescription
 - Surprising as the opioid epidemic has been reported as mainly a white male problem
- Race/Ethnicity: Asians are 2.67% less likely than whites to receive a prescription
- Educational attainment: Bachelor's degree 0.9% less likely, Master's 1.59% less likely
- Region: South 1% more likely to receive opioid prescription than Northeast

Interpreting Results cont'd (Linear Probability Model)

- Military Service: positive but not significant
- Poverty Category: Near-poor 2.1% more likely than middle income to receive Rx
- Age: Positive and significant; aging people might have more need for opioids
- Public Insurance: 4.71% more likely to receive opioid prescription than someone without insurance
- Private Insurance: 2.79% more likely to receive opioid prescription than without
 - Insurance coverage gives greater access to doctors and prescriptions
 - Potential need to review insurance prescription policies

Interpreting Results (Logistic Regression)

- Vast majority of same variables significant
- Regression statistics (model fit)
 - Akaike Information Criterion: 10395.4
 - o Schwarz Criterion: 10403.77
- Insurance variables again significant at 1% level
 - Odds Ratio Estimates: Private Insurance 2.491; Public Insurance 3.289
 - To find the change in odds, subtract 1 from odds ratio estimates
 - o Interpretation: the odds that someone with private insurance will receive an opioid prescription are 149% higher than someone without insurance; public insurance 229% higher than without

Conclusions

Key takeaways

- Public Insurance holders more likely to be prescribed an opioid
- Demographics of those receiving opioids are largely white
- Questioning assumption of problem largely being male

Further research

- Multiple years of data to include fixed effects over time
- o Drill down into high-frequency patients (34)
- Add more variables (unemployment, pain level experienced)
- Look state- or county-level for specific local demographics

Applications

- O Government and healthcare sectors as they try to combat the opioid epidemic: knowing who is at risk will allow for better preventive care and more careful prescribing
- Insurance providers evaluate opioid prescription policies

References

- Hollingsworth, A., Ruhm, C. J., & Simon, K. (2017). Macroeconomic conditions and opioid abuse. *Journal of Health Economics*, 56, 222–233.
- Krueger, A. B. (2017). Where Have All the Workers Gone? An Inquiry into the Decline of the U.S. Labor Force Participation Rate. *Brookings Papers on Economic Activity*, 1–59.
- Tong, S. T., Hochheimer, C. J., Brooks, E. M., Sabo, R. T., Jiang, V., Day, T., ... Krist, A. H. (2019). Chronic Opioid Prescribing in Primary Care: Factors and Perspectives. *Annals of Family Medicine*, *17*(3), 200–206.